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PREFACE

Early in 1990 a scientific committee was formed for the purpose of
organizing a high-level scientific meeting on Future Directions of Nonlinear
Dynamics in Physical and Biological Systems, in honor of Alwyn Scott's
60th birthday (December 25, 1991). As preparations for the meeting
proceeded, they were met with an unusually broad-scale and high level of
enthusiasm on the part of the international nonlinear science community,
resulting in a participation by 168 scientists from 23 different countries in
the conference, which was held July 23 to August 1 1992 at the Laboratory
of Applied Mathematical Physics and the Center for Modelling, Nonlinear
Dynamics and Irreversible Thermodynamics (MIDIT) of the Technical
University of Denmark. During the meeting about 50 lectures and 100
posters were presented in 9 working days.

The contributions to this present volume have been grouped into the
following chapters:

1. Integrability, Solitons, and Coherent Structures
2. Nonlinear Fvolution Equations and Diffusive Systems
3. Chaotic and Stochastic Dynamics
4. Classical and Quantum Lattices and Fields
5. Superconductivity and Superconducting Devices
6. Nonlinear Optics
7. Davydov Solitons and Biomolecular Dynamics
8. Biological Systems and Neurophysics.

Al Scott has made early and fundamental contributions to many of these
different areas of nonlinear science. They form an important subset of the
total number of the papers and posters presented at the meeting. Other
papers from the meeting are being published in a special issue of Physica
D Nonlinear Phenomena.

People who have worked with Al know that he insists that everyone
should do what he or she likes to do; this is certainly true, but it is also true
that from the very early days he has demonstrated a unique ability to
stimulate research in new directions. Moreover, his ability to interact with
people and to transmit his optimism and enthusiasm to those around him
has furnished a solid launching pad for these new lines of research. Many
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friends and colleagues around the world are thankful to Al for having
received such a stimulus. This was the essential motivation for our meeting
and for the publication of these Proceedings. It is a small way of saying
'Thank you, Al, and many happy returns".

It is our pleasure to acknowledge financial support from the NATO
Scientific and Environmental Affairs Division (grant SA.9-15-03), the Army
Research Office of the United States Army Laboratory Command (grant
29333 MA-CF), the United States Army European Research Office (grant
RD 6891-MA-02), the National Science Foundation (grant ASI 910728), the
Danish Technical Research Council (grant 16-4932-1 0S), NORDITA, the
COWI foundation (grant A-51.77/TJ/IJO), and The Technical University
of Denmark (basic research grant to MIDIT).

The Scientific Committee, consisting of D.K. Campbell, Los Alamos,
G. Careri, Rome, P.L. Christiansen, Lyngby, A.S. Davydov, Kiev, J.C.
Eilbeck, Edinburgh, A. Luther, Copenhagen, D.W. McLaughlin, Princeton,
A.C. Newell, Tucson, and R.D. Parmentier, Salerno, was particularly helpful
in the organization of the scientific program.

We warmly thank K. Fisker, L. Fonss, L. Gudmandsen, L. MacNeil,
M.P. S0rensen, E. Yde and many students at MIDIT for their generous
assistance during the meeting and the preparation of these Proceedings.

Peter Christiansen
Chris Eilbeck
Bob Parmentier
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PERTURBATIVE PAINLEV] ANALYSIS t

Robert Conte', Allan Fordy? and Andrew Pickering2

I Service de physique de l'dtat condensg
Centre d'itudes de Saclay
F-91191 Gif-sur-Yvette Cedex, France
2Department of Applied Mathematical Studies and
Centre for Nonlinear Studies
University of Leeds, LS2 9JT, United Kingdom

0. Preface

We present an improved Painlevi test, which enables us to treat negative res-
onances. Since the method is explained in a recent paper [5] and in proceedings
elsewhere, the present version is very short. We give a brief description of the method
and outline three examples.

1. Introduction

An ODE is said to have the Painlev6 property (PP) if its general solution is
single valued (except, perhaps, at fized critical points). Whilst most examples in the
literature possess the stronger property: "The only movable singularities of the general
solution are poles," the general PP allows, for instance, movable essential singularities
and natural boundaries, provided no branching takes place at them. Many people use
the quoted stronger property as their definition of the PP, but this is too restrictive
and dismisses some interesting equations which do have the weaker property. There
are several tests of the PP, devised by Kowalewskaya, Painlev6 , Gambier, Bureau,
Ablowitz, Ramani and Segur (ARS) and others (see [11 for references). Whilst these
tests are distinct and sometimes test different properties, they are collectively known
as "the Painlev6 test". There are many papers and reviews, most of which can be
found in the references of [1].

As was discovered by Ablowitz and Segur [21, the similarity (and other special)
solutions of PDEs solvable by the inverse spectral transform (IST) satisfy ODEs with
the P-type. This lead Weiss, Tabor and Carnevale [8](WTC) to devise a direct test
(based on that of ARS for ODEs) of the PP of PDEs. The WTC method has the
advantage of giving a direct correspondence with IST, Bficklund transformations, etc.,
even for ODEs.

The ARS and WTC tests (with various modifications) have been the most used
in recent times (the 'soliton period') and have been extremely successful in isolating
classes of 'integrable' equations. These methods construct a series expansion (about
a pole) for the solution of a nonlinear equation (analogous to the Frobenius expansion

t This is an outline of the lecture given by Allan Fordy and is dedicated to Alwyn
Scott for his 6 0 th birthday.
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Edited by P.L. Christiansen et at., Plenum Press, New York, 1993



for linear equations). For this to be a local representation of the general solution
requires an adequate number of arbitrary constants (for ODEs) to be present. This,
in turn, requires an adequate number of non-negative integer "resonances" or indices,
which we show to be equivalent to the roots of the indicial equation in Frobeuius'
method for linear ODEs. Since these integer indices a fortiori differ by integers,
compatibility conditions arise in order that logarithmic branching is avoided.

Any indices which are non-integer immediately indicate the presence of branch-
ing (algebraic or transcendental) so must be excluded. However, there are interesting
and important equations which have some negative integer indices which do not give
rise to corresponding arbitrary constants and which can not be tested for compatibil-
ity, using the above tests, thus leaving the question of logarithms undetermined.

In [6] we introduced a method of testing negative integer indices. By considering
the Painlevi property of a nonlinear equation and its linearisation, the negative integer
"Painlevi resonances" are converted into positive integer "Fuchs indices", which can
thus be tested for compatibility. This method has been generalised in [5,71, where we
consider a general perturbation series, including the results of [6] as the first order
perturbation. The general method is described below.

2. The Perturbative Painlevi Method

In this paper, for simplicity, we consider a single ODE for a single function u(z):

E =- K[u,z] = 0, (2.1)

polynomial in u and its derivatives, analytic in z.
First, we perform a usual Painlevi analysis of this nonlinear ODE. About any

family of movable pole-like singularities of u the standard Painlevi expansion takes
the form:

+00 +00
= u(O)xj+P, E = = wE(0)xj+q (2.2)

j=0 j

in which negative integers p and q are the respective singularity orders of u and E.
For this paper X may be taken as z - zo. In this expansion the arbitrary constants
ý apart from zo) arise at non-negative integer indices (usually calI.d "resonances").

et 1Z be the set of indices. As mentioned above, these indices should be integer, but
we do not insist on a "principal branch" having (apart from -1) a full complemnent of
non-negative (integer) indices (usually required so that the general solutica is locally
represented by (2.2)). Let pc7 be the minimum index (p : -1). Assuming that no
branching occured in this 'standard' Painleve expansion and that it does not represent
the general solution (meaning the presence of negative indices other than -1), then
we need to introduce the 'missing' coefficients.

We now seek a Laurent expansion for any solution which is near to the solution
(2.2) obtained by the standard Painlev6 method. We do this by considering a pertur-
bation expansion, representing a nearby solution by an infinite perturbation series in
a small parameter e:

+00
u = E enu(), K[u,m] = 0, (2.3a)

n=0

+00
E = E c 0. (2.3b)

n0
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The condition that this expansion still be a solution generates the infinite sequence
of successive differential equations

n = 0: E() K[u(°), x] = 0, (2.4a)

n > 1 E(n) k'[u(°),zXu(n) - R(")(u(°),... ,u("-)) - 0, (2.4b)

in which the expression R(n) represents the contribution of previous terms of the
expansion; R(1) is identically zero. Each higher order equation (2.4b) is a linear inho-
mogeneous differential equation whose left hand side is the Fr~chet operator k'[u(°), x]
(independent of n) acting on u(n).

We carry out a Painlev6 analysis of each of the equations (2.4). For n > 1 the
equation for u(n) is linear, so the analysis is effectively that of Fuchs-Frobenius. The
indices are (up to a shift) the roots of the indicial equation. For n > 2 the domi-
nant behaviour of U(n) is determined by R(n) as Xnp, where p is the minimum index
mentioned above. At each level of perturbation, compatibility conditions (sometimes
new) arise at each integer index. Thus we derive (potentially) more necessary condi-
tions for the equation to have the PP. At each level of perturbation we construct a
pole expansion, but the order of the pole increases with the order of the perturbation.
The resulting infinite perturbation expansion is a doubly infinite Laurent expansion:

+00
-(n) Z n)j+p, (2.5a)

j=np
+00

E() = ,Ej (2.5b)
j=np

= [ n)X+P UiE . (2.5c)
n= Ljp j-00

This is not, generally, an essential singularity. For further explanation we refer
the reader to [5].

3. Examples

In this section we present three equations and indicate the order of the pertur-
bation needed to draw some conclusions.

Chazy's equation of class IV

This equation has the form [4]:

E - u"' - 3uurr - 3u'2 - 3u 2 u'

+ 2d 3uu' + cou' + d3 u 3 + d2 U2 + diu + do = 0, (3.1)

with co, di arbitrary analytic functions of x. This equation has two families:

p = -1, u) 1, indices (-1,1,3), k = -u"' - 3uu" - 3u'2 - 3u 2u', (3.2a)

p = -1, _ 2, indices(-2, -1,3), k = -U'- 3uu" - 3u'2 - 3u 2u'. (3.2b)

3



The first family is principal, so we do not expect higher orders to generate more

compatibility conditions than the pure Painleve test. The latter gives:

d3 =0, d2=0, di=co. (3.3)

These conditions were shown by Chazy to be both necessary and sufficient.
The second family is more interesting for, at the seroth order, two compatibility

conditions are still missing. We obtain at order c0 that U30) is arbitrary, together with
the condition:

d, - co' + cod 3 - 2d2d + 2d4 = o. (3.4)

Whilst this is implied by (3.3), the two conditions are not equivalent. We need to use
a first order perturbation to achieve equivalence.

Chasy's equation of class V

This has the form [4):

E u- "' - 2uu" - 4au' 2 - 2u 2 u'

+ al u" + c0u' + d2oU 2 + dju + do = 0, (3.5)

with a,, co, di arbitrary analytic functions of z.
The equation has two families:

p-- ,u(O) -1, indices (-1,1,4), k = -u"' - 2uu" - 4u' 2 - 2u 2u', (3.6a)

p =-1,u(°) =3, indices (-3,-1,4), k = -u"' - 2uu" - 4u' 2 - 2u 2u'. (3.6b)

An analysis of the first family provides four conditions, equivalent to:

a, =0, d2 =1, 2 =i' d' =0. (3.7)

These necessary conditions are known to be also sufficient for the equation to have
the PP [3,41.

Since the second family is nonprincipal, it is necessary to consider at least order
n = 1. In fact, for this example it is necessary to consider a perturbation of order 2
in order to prove equivalence of the two families.

An example needing a seventh order perturbation

In his discussion of fourth order ODEs for which u.". is linear in u"', Bureau ([31
page 79) encountered the simplified equation:

Uf"" + 3uU" - 4' 2 -= 0. (3.8)

The two families are

p -2,u(o°) = -60, indices (-3,-2,-1,20), k = u" + 3uu" - 4u'2 , (3.9a)

p =-3,a°) arb, indices (-1,0), k = 3uu" - 4us2. (3.9b)

4



The first family provides, at zeroth order, only a two-parameter expansion. In
carrying out a perturbation it is not until aeventh order that any problems arise. At
this order we find that both indices -1 and 20 are incompatible, so that the solution
has a movable logarithmic singularity.

This example illustrates that it is not (with our current knowledge) possible to
predict the order at which to stop!

4. Conclusions

The present method, which is based on perturbation theory, provides necessary
conditions for a differential equation to have the PP. It proves the identity of Painleve
"resonances" with the Fuchs indices of a linear equation. In case some Painlevi indices
are negative integers (apart from the ever present -1), these necessary conditions are
new and the information they contain can be decisive.

If one takes account of the necessary conditions generated by the very first stages
of the a-method of Painlevi , the present method provides infinitely many necessary
and sufficient conditions for the absence of movable critical points of algebraic and
logarithmic types. We do not yet know = upper bound, if one exists, on the pertur-
bation order n, required to find all possible compatibility conditions, so our process
is not finite, as would be required to define an algorithm. As explained by Painlevi ,
there are unfortunately no methods to determine when an essential singular point is
not critical.

In [5] we present many examples which illustrate important features of our
method.
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INTRODUCTION

The study of discrete-time integrable systems is currently the focus of an intense
activity', 2, 3, 4

It is interesting to note that many of the well-known features of continuous-time inte-
grable system such as Lax-pair, Backlund transformation, PainlevO property, etc., carry
over to the case of discrete-time integrable system. As is noted in ref 4, intelligent space-
time discretization of integrable systems is a notoriously difficult problem and versions of
in.tegrability are different depending on the way of discretization.

In a series of papers5' 6, 7 one of the authors has l)roposed a method of constructing
nonlinear partial difference equations that exhibit solitons. The method uses the bilinear
formalism and follows 3 steps. First, a given nonlinear partial differential equation is
transformed into the bilinear form by the dependent variable transformation. Secondly
the bilinear differential equation is discretized. Thirdly the bilinear difference equation
is transformed back into the nonlinear difference equation by the associated dependent
variable transformation.

In this paper we explain why it is relatively easy in the bilinear formalism to go from a
continuous system to a discrete one without destroying integrability. Then we construct
discrete-time Toda equations and a discretized 2-wave interaction.

N-SOLITON SOLUTION OF THE BILINEAR EQUATIONS

Recent development of the bilinear formalism reveals that the bilinear equations have
an extremely simple structure (the Plicker relation or the Jacobi formula) if the soliton
solutions are expressed by the determinants.

Take the Kadomtsev-Petviashvili(KP) equation for example

(4ut - 6 uu, - u•r)ý - 3u, = 0, (1)
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which is transformed into the bilinear form

(D - 4DD, + 3D )r. (2)

through the dependent variable transformation

u = 2(logr).1, (3)

where integration constants are chosen to be zero. The wronskian form of the N-soliton
solution to the KP equation is expressed by

rKp = det 1--(4)

where all Oi satisfy the following linear differential equations for n = 1 2,..-

8 ,0- , = a n ' ( 5 )

where xi = x, X2 = Y, x3 = t,
Here we note that the Pliicker relation are algebraic identities of determinants among

which the simplest one is the following

jao al a2 a131_lao a2 .1 i aa ao a3 lb a21 0. (6)
lbo lIIb2  b3 - o lb2 b1  b3 'bo b3 1 b1  b2 lU

Recently Nakamura' has shown that the bilinear KP equation reduces to the Jacobi
formula of determinants provided that the solutions are expressed by the gramian type
determinant

TKp detlMijI•,J•N,, (7)

where

f "- cij + f figjdx, (8)

f, and gi satisfy the linear differential equations

Oa7, " OL ( 1i,,_, (9)or,, Ox',' o&--: - " --- (9

In ref 7, a discrete bilinear equation was obtained:

(Z 1 exp(D 1) + Z2 exp(D 2 ) + Z3 exp(D3 )Jf• f =0 (10)

where Z, and Di for i = 1, 2,3 are arbitrary parameters and linear combinations of the
bilinear operators Dt, Dý, D. and D,, respectively. The equation generates various types
of soliton equations including the KdV equation, the KP equation, the modified KdV
equation, the sine-Gordon equation, etc. A Baklund Transformation and a Lax-pair for
eq.(10) are also obtained.

As a special case of eq.(10) Miwa proposed the following bilinear difference equation:

a(b - c)i-(l - 1, rn, n)r(l, m - 1, n - 1)

+ b(c-a)r(l, mn- 1, n)r(l- 1,m,n - 1)

+ c(a - b)r(I,m,n - l)r(I - ,m-1, n) = 0 (11)
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noindent where a, b, c are constants related to the intervals of the discrete space-time, 9

which is called the discrete KP(d-KP) equation. The N-soliton solution of the d-KP
equation rdi, is expressed by a Casorati determinant (a discrete analogue of a wronskian):

Tdic = detIVi(l, m, n, s + j - 1)1I!..ijN (12)

where (p(i = 1,2,. N) satisfies the linear difference equation

A-ILpi(l, m, n, s) = A_,.t(/, m, n, s) = A_,&d/, m, n, s)
= lm, n, s + 1) (13)

where A-1, A, A., are the backward difference operators defined by

A_•, = [V,(/) - V,(1 - 1)1/a, ',14)

A_,.ýi = Vio(m) - ýp,(m - 1)l/b, (15)

A-.V, - [•(n) - v,(n - 1)1/c. (16)

On the other hand the N-soliton solution o,, of the continuous KP equation is expressed
by

T = det Vi (17)

We show in the following that
Tdisc = rcot (18)

up to a trivial factor. A general solution Vct to linear differential equation(5) is expressed
by

Pco, = Z Cp exp[Z pkxk] . P (19)
P k=l

while a general solution Vdi,, to the linear difference equation(13) is expressed by
Pdc = � cp(1 - ap)-'(l - bp)-(l - cp)-n .. p. (20)

P

According to Miwa, we introduce an infinite number of coordinates xk(k = 1,2,...) by

a k b k Ck
1- + m- + n- + - (21

x= i.k km +n +.- (21)

Then we have

(1 - ap)-'(1 - bp)-'(1 - cp)-".•
= exp[-I log(1 - ap) - m log(1 - bp) - n log(1 - cp).]

= exp[lpkxk], (22)
k=I

which gives

Vdisc = Pcmt- (23)

Using a relation

axeot(s) = Veo.t(S + 1) (24)
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we find

rdisc = detlpdic,(l, m, n, s +j -- i,j

=det 1 O otAX,,(X12,

= Tc,.- (25)

Furthermore it can be shown that the bilinear d-KP eq. is reduced to the Pluicker relation
if rdi,, is expressed by the Casorati determinant and to the Jacobi formula of determinant
provided that adisc is expressed by the discrete analogue of the gramian type determinant.
The invariance of N-soliton solution of the bilinear equation under the transformation
of the continuous coordinates x1, x2,-.., into the discrete ones 1, m, n,..., is a guiding
principle of constructing discrete integrable systems.

DISCRETIZATION OF 2-D TODA MOLECULE EQUATION

We have the Toda lattice with free ends:

02
a2 Q. = V.+, - 2V,, + Vnl, (26)

1V. = exp(Q.), (27)

which has another expression:

a-VV. = V.(J. - J.+1 ), (28)

0-yyJ. = V-I v• (29)

for n = 1. 2.3,.-. N - 1 with the boundary condition

VO = VYN = 0. (30)

which is called the two-dimensional (2-D) Tuda molecule equation. Let
02

V, = 5 10g(7-,,). (31)

Then eq.(26) is integrated with respect to x and y to give the bilinear form
02r Or,. Or.

n oxOy Ox jy - (32)

where the integration constants are chosen to be zero. The boundary conditions eq.(30)
are satisfied with To = 1 and TN = (P(x)X(y), 1(x) and X(y) being arbitrary functions of
x and y respectively.

Let a solution r,(x, y) to the bilinear eq.(32) be expressed by a two-directional wron-
skian of order n,

ax ay] ~ ,y (33)
T,,(x,y) = det O Y-) (0)(

10
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where ý,(x,y) is an arbitrary function of x and y. Then eq.(32) becomes the Jacobi
formula of determinants.

We conjecture that a difference analogue of the bilinear eq.(32) is the Jacobi formula
which is expressed by a Casorati determinant

?i'(1, m) = detjVp(l + i - 1, m + j - (34)

as follows

i-(l + 1,m + 1)?ýn(l,m) - f"(l + 1,m)i'(l,m + 1) = i(l,m)i'-U + 1,m + 1). (35)

The boundary conditions eq.(30) are satisfied with the following ip(l, m):

n+10(1, m) = fij (1)ýj (m). (36)

j=l

Let x = 16, y = me where 6 and ( are parameters specifying the intervals and f,(l ,) =
(6E)n"n-)/ 21,-(x, y). Then eq.(35) is transformed into

rý(x+6,y+ )Tn.(x,y) - r,(x+6,y)rn(x,y+ E) = &n.+I(x,y)T._I(x+ 61,.+( ), (37)

which is transformed back into a discretized 2-D Toda molecule equation:

In+l(x,y)V.(x,y) = In(x,y+C)V,,(X+6,y) (38)

Ij (x,y) + bfVn(x,y) = Iý(x,y + f) + bCE1V_(x + b.y)

through the dependent variable transformation

r,) _(x, y)r.(X + 6, y) (39)
Tn- 1 (X + 6 ,y)T. (x,y)'

V,(~)=r.+1 (x, y)r._i x, y + e)40
V. (X, Y) =-+ X )n X (40)

r, (x. y)7u(x, y + E)

Let I.(x, y) = 1 - MJ.(x, y). Then eq.(38) is transformed into

{ b-[, [,(X +6, y) - V,(x, y)] = V (x +6. y)Jd(x, y + f) - V;(x, y)J +l(x. y),

E-'[J.(xy+e)-.l.(x,y)] = '._1 (X+by))-1V(x.y),

which clearly shows that it becomes the 2-D Toda molecule equation in the small limit of
6 and f.

THE BACKLUND TRANSFORMATION

We have the discrete Toda molecule equation in the bilinear form

r.(x +6 , y + e)r.(X.) - T.(x + 6 , y)Tn(x,y + c) =hTn+i(I,y)._I(x + 6. y + e). (42)

Following the standard procedure we obtain a Bdcklund transformation for eq.(42):I.(X, y + C)r7'(, y) - r.(X, y)r'(x, y + f)
= {lAT.+I(z,y)r'._,(x,y+E)-v T(x,y+E)-'.(x.y)},

(43)
r.(x + 6,y)rI-(X,y) - r.(X,y)l_,(x +,6,y)

= 6{-A'm._i(x+ 6, )r.(x, y) + (X,- )r'_-(x +- , y)}.
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Let

r"(x, y) = P-+,(x, y)r(x,Wy). (44)

I' Then eq.(43) is expressed, using eqs.(39),(40) and (44), by

( •,,(X,y) = ,,(X,y+ E)+ 4._1 (x, y)V',,.z, y + ),
tp,,(x + 6, y) = I,,(x, y)•i(x, y) + 6•.+(x, Il), (45)

for n = 0,1, 2,.., N - 1 where we have chosen A = 1, v = it = 0 for simplicity.
Let ý(x, y) be a N-dimensional vector:

g(X, y) = [p,(X, y), 02(X, y),..., ,N(x, y)]r, (46)

where T denotes the transposed matrix, and L(x, y) and R(x, y) be N x N matrices:

1 0)
L(x, y) =V 2 (X, Y) 1

(0VixY)

R(x,y) = 1V2 (x,y)1,h (X,_( Y))0

Rv, y)I ,l

0 ~IN (X, Y)

Then eq.(45) is expressed with the matrices:

,(x, y) = L(x, y)W(x + 6, y),{p(x, y + c) = R(x, y)V)(x, y), (47)

and the compatibility condition of eq.(47) becomes a matrix equation:

R(x, y)L(x, y) = L(x + 6, y)R(x, y + E), (48)

which gives the discrete 2-D Toda molecule eq.

fI.(x, y + E) - I.(x, y) = 6b[(x, y) - ,(X + 6, y)l, (49)
I.(X,y + E)V.(X + 6, y) = I,+,(X,y)V1 (xy).

LR FACTORIZATION METHOD

It is known'° that a discrete 2-D Toda molecule equation is reduced to a discrete 1-D
Toda molecule equation by introducing a symmetric variable t with respect to x and y:
t = x + y, 6 = e and assuming that all dependent variables are functions of t only, namely
V.(x, y) = V.(t), l.(x, y) = I.(t), L(x, y) = L(t), R(x, y) = R(t), etc.

Accordingly we obtain a discrete 1-D Toda molecule equation:

fI.(t + 6) - I"(t) = 62[V'(t) _V._ 1(t +V6)],
l4(t + 6)V.(t + 6) = I.+1t0vct,50

12



which is expressed by a matrix equation:

R(t)L(t) = L(t + 6)R(t + 6). (51)

Let us introduce a matrix A(t) by

A(t) = L(t)R(t). (52)

Then eq.(51) implies

A(t + 6) = R(t)L(t). (53)

Eqs.(52) and (53) for 6 = 1 are nothing but the LR factorization method of calculating
eigenvalues of a matrix A. Hence we obtain eigenvalues of a matrix A by investigating
the time-development of the Toda molecule equation"2 . Details of the method will be
published elsewhere.

Eqs.(52) and (53) show that

A(t + 6) = L-1(t)A(t + 6)L(t). (54)

Hence we have
Tr[A(t + 6)]' = Tr[A(t)]J, (55)

which implies that the trace of the m-th power of A(t) is the m-th conserved quantity of the
discrete 1-D Toda molecule equation. We note that the discrete 1-D toda lattice equation
with the periodic boundary conditions, V,(t) = VN+I(t), 11(t) = IN+I(t) is expressed by
the same matrix equation as eq.(51) by introducing the periodicity of V',(t) and I,(t) into
the matrices L(t) and R(t).

2-WAVE INTERACTION

We consider an discrete analogue of a system of coupled nonlinear partial differential
equations describing interaction of two waves with constant velocities cl and c2(0 cI)

I (•+Cl )U = uv.

( ~ + c 2 ) v = i n , ,( 5 6 )

which is rewritten in the following form by the coordinates transformation

= uvtOv =(57)v

One of the authors has shown that eq.(57) is obtained by the Bdeklund transformation of
the Toda molecule equation ".

We show that the Backlund transformation of the discrete Toda molecule equation gives
a discrete form of the 2-wave interaction. Let us introduce a couple of dependent variables
un(x, y) and v.(x, y) by

c- [r((x, y + ')r'(xy)-r•(xy)7(x, y + ()] (58)
=r(X, Y + 0)r'n(X, Y)
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= Arn+1(x, yY_)I (X, Y + E)
- v (59)T.(X, y + ()T.'(x, y)

and

V -n S 6 (x + 6y)rTn 1(x,y) - r.(x,y)". 1 (x + 6, (60)
TRX= r.(x, y)e_ (X + , Y)

A-1rn-(xX,•_+ (x+ y) -1 O (61)

where we have used eq.(43) in rewriting u.(x, y) and v,(x, y). Then we find that u,,(x, y)
and vn(x, y) satisfy a coupled difference equations.

un(x+6,y) - un(x,y)
= 6 {[Li+Un(X+6 ,Y)lVn(X,Y+E)- [.+un(X,y)lvn+l(X,Y)}, (62)

v.(X,jy+C) - v.(X,y)I E{[t` +vn(X,Y + •))u.-I(X + ,y) - t,+ vn(X,Y)]U.(X,Y)),

for n = 1,2,... , N which is a discrete analogue of 2N-wave interaction. As a very special
case, let us take N = 1,,u = v = 0, v2 = Uo= 0. Then eq.(62) is reduced to

{ U1(x+6,y)-U 1 (X,y) bul(x+6, y)v1(x,y+ 0,

vdx,y+f)- vi(x,y) -(V 1(xy)u1(xy), (63)

which is a discrete form of 2-wave interaction.
It is also possible, by using the bilinear formalism, to construct the following nonlinear

difference equation.

u"(t + 6) - uý(t) = 6[u"._(t + f)u.(t) - u"(t + 6)u"+1(t)I, (64)

which is reduced in the small limit of 6 to a system of Lotka-Volterra prey-predator
equations

dd = Un(u.-l - un+ 1 ), for ii = -o,... ,-1,0,1,..,x. (65)

Details of derivation of eq.(64) will be published elsewhere.
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SOLITONS IN CROSSED-FIELD DEVICES
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Abstract

A new application for soliton theory is the nonlinear evolution of an electro-

magnetic wave in a crossed-field device such as a magnetron or a crossed-field

amplifier. With a singular perturbation analysis, we are able to more accurately

predict the operating range of such devices. Important new insights into the

physics of how these devices operate are also found.

1 Introduction

Crossed-field devices such as magnetrons and crossed-field amplifiers (CFA's) are very
important as generators and amplifiers of high frequency (GHz) electromagnetic radi-
ation. They are found in radar devices, telecommunication systems as well as in the
now very common microwave ovens. Obviously, engineers know how to build them.
But how do they operate and what are the exact physical principles on which they do
operate? If such were fully understood, then one should be able to predict, from first
principles, their operating characteristics such as the voltage operating range, power
output, gain and etc. Unfortunately such cannot be done. The engineers have found
some very good rules and design criteria for building these devices but the classical
theories1 '2 are not able to explain many of the important details of these criteria. In
particular, the classical theories predict a much larger voltage operating range than is
experimentally observed. What we will describe here is a nonlinear theory3 based on
the nonlinear Schrodinger equation which will successfully predict an operating range
much more in agreement with experiment.

In the next section, we will describe the geometry and the physical arrangement in
a simple planar CFA. (Although actual devices are usually cylindrical, most CFA's do
have a sufficiently small aspect ratio such that they can be approximated by a planar
model.) The main points of this section will be to describe the structure of the electron
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sheath about the cathode which is a key feature of these devices. In particular, we
will delineate how the shear flow in the sheath and its height is related to the applied
voltage. These are very important points since they determine whether or not an
interaction between an rf electromagnetic wave near the anode will occur with the
sheath through a very simple wave-particle interaction, W = kv0. This interaction is
the basis of the classical theory.

In Section III we will briefly describe the nonlinear analysis whereby we can obtain
a nonlinear Schrodinger description of a propagating electromagnetic pulse and discuss
its consequences. Here we will delineate our considerations which lead us to the NLS
model. Our guidling principle will be the experimental operation of these devices,
using this as a criteria for the validity of a theory. Since the theoretical calculations
are given elsewhere, we shall avoid giving those here and instead simply give a concise
verbal description of their results and consequences. Finally, in order to find a more
accurate description of the experimental operating range, we are lead to consider a
Vlasov-Poisson model which is currently being investigated. Already this model has
provided physical justification as to why the classical and cold-fluid theories fail. The
reason for this is quite simple and will be discussed at the end.

7i
XWA no de

Electron,
Sheath

Cat bode
ý/ / //7 /

FIGURE 1 - Geometry and shear flow in a planar crossed-field device.

Finally I wish to acknowledge my collaborator in this work, Gary E. Thomas who is
the group leader of the Advanced Technology Division of Varian Beverly. Gary has had
considerable experience with these devices and has worked hard at keeping me "honest"
in relation to the experimental situation through all my theoretical calculations. He
originally studied solitons under Flora Chu (who was a student of A. C. Scott) at MIT,
which explains in part his strong interest in this NLS approach.

2 Geometry and Simple Theory

The geometry of a planar magnetron is shown in Fig. 1. There is a large
positive voltage on the anode relative to the cathode which pulls electrons out of the
cathode and into the vacuum region between the cathode and anode. As the electrons
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are accelerated toward the anode, a large magnetic field (perpendicular to the figure and
into the paper) turns the electrons around, preventing them from reaching the anode.
Eventually a stable sheath of electrons is formed about the cathode with the magnetic
field producing a magnetic insulation between the cathode and anode. We shall always
assume translational invariance parallel to the magnetic field.

There is an equilibrium configuration where the sheath is stationary and transla-
tionally invariant in the x-direction (parallel to the electrodes). One may easily solve for
this configuration from the cold- fluid plasma equations coupled to Poisson's equation.
There equations are

v 2o 2 ~ (2)

where • (e/m) times the electrostatic potential, 12 = (eB/mc) is the electron cy-
clotron frequency where B is the (static) magnetic field and w2 is the electron plasma
frequency, 41re 2no/m, where no is the electron number density. These are the basic
equations that we will use here. Everything will follow from this simple set of two
equations.¶ The equilibrium configuration follows upon taking Ot = 0 = 0. and v1, 0. One
then has

V. = Vo = 90/f, (3)

= (4)

The boundary conditions on (4) are 4(0) = 0 (simply choosing the cathode to be
grounded) and 0,0(0) = 0 (space charge limited current condition - if this was nonzero
then more electrons would be pulled out of the cathode causing it to decrease until
it vanished anyway). Integrating (4) from the cathode to anode must then give the
applied cathode-anode voltage. This gives only one condition on the electron density
profile. However from these equations, there are no other conditions on the equilibrium
density profile, no(y). It is arbitrary except that (4) must integrate to give the correct
applied interelectrode voltage.

From (3) and (4) it follows that

allo = 2/Q (5)

showing that the electrons will undergo a shear flow. This shear flow is an E x B drift,
vanishing at the cathode and rising to some maximum value at the top of the electron
sheath. Typical density profiles are shown in Fig. 2. The classical density profile2 , called
a Brillouin flow, is shown in Fig. 2a. (The other profiles will be discussed later.) Here
one assumes that the electron density takes on the maximum possible value (consistant
with single-particle stability - to be discussed later) of -• = 0'. The height of the
profile, b, is then determined by the applied voltage. Integrating (4), we have

2 (0<y<b) (6a)
2

0 = bfJ2(Y - 1 b) (b < y<t) (b(by<)(6b)
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FIGURE 2a - The classical Brillouin (box) profile, b) The same with a ramp added,
and c) The same with a plateau on the edge (double box).
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where I is the cathode-anode spacing. Requiring (6b) to give the correct applied voltage,
V, gives

y V )(7)

which determines b. (Only one root is physical.) Note that from (3) and (6), the drift
velocity

u0=fl3  (O<y<b) (8a)

a =flb (b<V<t) (8b)

increases linearly from zero at the cathode up to the value of Olb at the top of the sheath
(y = b).

The behavior of the equilibrium sheath as a function of applied voltage follows from
these equations. As one increases the applied voltage from zero, the height of the profile,
b [determined by (7)] also increases from zero monotonically up until b = 1. At this
voltage,

_ (9)

the device will become conducting because the sheath has reached the anode. At this
point, one no longer has magnetic insulation. This voltage is called the Hull cutoff
voltage, Vaff. Also note that as the voltage increases from zero, the maximum drift
velocity, bfl, also increases in a like manner since it is exactly proportional to b.

Now consider what happens when a small rf signal is injected at the left end and
travels to the right in the same direction as the drift velocity, vo. (Such a signal is
always localized near the anode due to the presence of a "slow wave structure" built
into the anode. This structure does not directly interact with the sheath and serves
only to slow the electromagnetic rf wave to a phase velocity much less than the speed
of light. Given any frequency, it forces the rf wave to have a definite value for k where
w/k << c.) If the voltage is so low such that the maximum drift velocity, b&, is less
than the phase velocity, w/k, of the rf wave, then nothing happens. The drift velocity
of all the electrons are too slow to stay in phase with the r wave. Thus they see only
an oscillating electric field which time averages to zero. If one now raises the applied
voltage, one will reach a voltage at which the drift velocity of the electrons at the top
of the sheath will exactly match the phase velocity of the r signal. The voltage at
which these velocities become equal is called the "Hartree voltage", Vi,, and its value
follows from bfl = w/k and (7). This is

V , . f - ,w/k) (10)
_e1 2

The significance of the Hartree voltage is that for voltages above the Hartree voltage,
there is always a layer of electrons in the sheath whose drift velocity exactly matches
the phase velocity of the rf wave on the anode structure (vo = w/k). Now this layer
of electrons can strongly interact with the rf wave since they travel exactly in phase
with it. Exactly what happens next is not fully understood, but what seems to happen
is that the electrons in this layer are induced to move across the vacuum region onto
the anode, depositing the electrostatic potential energy that they have gained (from
the DC field) in phase with the rf wave, thereby amplifying it.
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3 Nonlinear Analysis

Such are the basics of the classical theory. But it needs refinements. For example, one
of the major differences between predictions of classical crossed-field device theory and
actual operating performance of crossed-field amplifiers is the voltage range over which
microwaves are generated. Classical theory"'2 predicts that operation should occur from
the Hartree voltage to the Hull cutoff voltage. Experimental data4 obtained on crossed-
field amplifiers shows that operation only occurs for ratios of applied voltage to Hartree
voltage of up to 1.3. For typical operating magnetic field values, 1.3 Vf, 7 t7,, is much less
than the Hull cutoff voltage. For a theory to be considered valid for predicting crossed-
field amplifier performance, that theory must predict the operating voltage range and
provide an understanding of the physics responsible for this observed behavior.

Using this observed performance as a major check of our theoretical work, we have
pursued an approached based on a nonlinear Schrodinger equation and a modula-
tional instability. The motivation behind using an approach based on the nonlinear
Schrodinger (NLS) equation was that an NLS equation is known to describe a large
number of weakly nonlinear systems and it is widely accepted that crossed-field de-
vices are at least weakly nonlinear if not strongly nonlinear systems. Furthermore, one
can argue that the conditions in a crossed-field device are the same generic conditions
which occurs whenever the NLS is applicable5 ' 6'-. Namely the motion is 1) essentially
one-dimensional, 2) the wave is almost monochromatic, 3) the dispersion is weak, and
4) the nonlinearity (at least in the initial stages) is weak.

The key to understanding the operation of a crossed-field device lies in the plasma
density profile shape. The classical profile shape, Brillouin flow' (see Fig. 2a), has been
extensively analyzed8 ,9",1 in the literature. It does have an internal eigenmode which
has wave-particle resonance (vo = w/k), but this resonance is well below the top of
the sheath. This mode is almost never seen in particle simulations and also violates
the engineering design criteria" where the resonance has to occur at the top of the
sheath. Thus it does not predict the correct operating eigenfrequencies of such devices.
This all indicates that the assumed classical profile may well be in error. Consequently,
we have searched for other possible realistic profile shapes that could give the correct
eigenfrequencies. One of our approaches has been to investigate how the higher order
nonlinearities could eventually distort the original Brillouin density profile into some
other shape. We had found that second-order (in amplitude) effects would introduce a
density gradient 12 . Consequently, one could expect the classical Brillouin profile rather
quickly to adjust itself into a "box plus ramp" profile as shown in Fig. 2b. After this
was realized, considerable theoretical and numerical effort'" went into trying to find an
eigenfrequency when the resonance (w = kvo) was located along the negative density
gradient at the edge. This effort was a general failure for finding such an eigenfrequency.
However it did reveal that the eigenfrequencies absolutely would not ever occur along a
negative density gradient. In fact, they could only be found to exist when the resonance
occurred in a constant density region (zero density profile). (Any density profile with
"a region of a positive density profile was always stronly linearly unstable14.)

After this, it was realized that any density profile in the form of either a box or
"a box plus ramp would never have a correct operational eigenfrequency. So the main
question now became what would be the linear evolution of such an initial profile. To
answer this, it was essential to study the general initial value problem and to study
the evolution of the continuous spectrum. It was found that the continuous spectrum
could always introduce plateaus at the resonances'-. This then suggested the double-
box profile shown in Fig. 2c. From our previous extensive numerical studies, it was
recognized that such a profile could indeed have a second eigenfrequency on the outer
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II

plateau. Numerical calculations quickly verified such, as well as the fact that this
eigenfrequency was indeed in the correct operating range. Further exploration of this
revealed that the parameter region of interest was when the thickness (in y) of the
second box is very small. In this case, we could actually obtain analytical solution by
using the thickness of this second box as a small parameter for expansion.

This result had given us a workable linear theory on which to base a nonlinear
analysis. The general nonlinear theory was presented in 19891617 and was independent
of the density profile shape. The only condition for the validity of this nonlinear analysis
is the absence of any linear instabilities. The general results of this nonlinear analysis
are quite generic. The analysis is based on a singular perturbation expansion"8 . In first
order, one has the linear theory. If one has no linear instabilities, then one proceeds to
second-order. Here one finds that the envelope will move with the group velocity, strong
density gradients will tend to diffuse away'", and the background shear flow will undergo
a nonlinear shiftl", 6 . In third-order, the nonlinear shift in the background shear flow is
the source of the nonlinearity which drives the nonlinear Schrodinger equation (NLS),
which is

1 (1
iOa', + lwkka,2, + rv p' 2 = o 11

In the above, T is the (slow) time, w(k) is the linear eigenfrequency, wAA(= 0) is
the dispersion, X z - vrt is the comoving coordinate where v,(= 4) is the group
velocity, r is the nonlinear coefficient (complex in general), and VP is the normalized
rf electric field amplitude inside the crossed-field device. Fundamental formulas for
calculating the above coefficients in the general case have been give in References 16
and 17. These can be easily specialized to the case when the profile is the double-box
profile in Fig. 2c.

In the limit of a small outer box on the profile, we can determine the frequency
spectrum, the group velocity, the dispersion and the nonlinear coefficient. The general
results3 are that the dispersion is always positive and the real part of the nonlinear
coefficient, r, is always positive. Whence these modes are always MODULATIONALLY
UNSTABLE and soliton formation is possible. Furthermore, the imaginary part of the
nonlinear coefficient is always very much smaller than the real part. Thus damping can
be neglected and the nonlinear evolution of this eigenmode will be described by the
NLS, eq. (11).

Using this analytical solution to evaluate the coefficients we can predict the operat-
ing voltage range for the S-band crossed-field amplifier and compare these predictions
to available experimental data3 . This comparison, is shown in Fig. 3. The upper and
lower curves of Fig. 3 are the cutoff and Hartree voltages respectively. According to
classical theory, the device should operate anywhere between these voltages. The dots
are experimental values delineating the lower and upper ranges of the actual operating
voltage as a function of the (normalized) magnetic field, (/11. Clearly, in reality, op-
eration only occurs over a very small fraction of the region predicted by the classical
theory. The middle curve is our prediction based on the NLS model. At low values of
magnetic field it appears that there is close agreement between the predictions of the
theory and the experimental data. Unfortunately, the theory does not correctly predict
the behavior at high values of magnetic field. However, at least the maximum voltage
curve from the nonlinear theory is less than the Hull cutoff curve.

The fact that the nonlinear theory does not correctly predict the high magnetic
field behavior indicates that a simplifying assumption used may be incorrect. One pos-
sibility is that the cold-fluid assumption is incorrect and that finite temperature and
pressure effects should be included. One can also show from a scaling analysis of the
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FIGURE 3 - Operating voltage vs. magnetic field for experiment (dots) and theory
(solid lines). The dots indicate the maximum and minimum operating voltages for an
experimental device. The curve labeled A is the Hartree voltage which is the minimum
voltage at which the device should operate. The upper curve labeled C is the cutoff
voltage which is the maximum operating voltage according to classical theory. The
curve labeled B is the maximum operating voltage per our criteria.

cold fluid equations that the theoretical operating range must always increase as fl: for
large magnetic fields. On the other hand, the experimental data indicates an operating
range almost independent of the magnetic field. This further indicates that additional
parameters (such as temperature) must be included.

This might seem strange at first that one would consider including temperature
effects since typical operating voltages involved are on the order of kilovolts whereas
thermal effects would be only on the order of volts (typical of the metallic work func-
tions). However recent results on the Vlasov-Poisson system1 9 f1r a planar crossed-field
device shows that thermal effects can be much more important than has been previously
suspected. This is because electrons in a dense nonneutral plasma will not oscillate at
the cyclotron frequency f0. Rather they will oscillate "0 at the reduced hybrid frequency
of A, where

N 2- (12)

and their Lamor radius will typically be

rL VT/A (13)
where vT is a typical thermal velocity. For a Brillouin flow where W = f12, one has
i\2 = 0 and therefore rL = oo! Thus in the interior of the sheath, where w2 is probably
just less than f12, very small thermal velocities can now give rise to extremely large
orbital variationsI9 . In other words, the interior of the sheath is probably very far from
being a cold laminar flow. Rather it is most likely closer to a hot turbulant flow where
any cold-fluid mode deep in the sheath would be rapidly damped out due to the thermal
noise. Thus we also have a very reasonable and physical explaination as to why any
interior cold-fluid modes are not observed. They are simply heavily damped. Only for
the modes near of on the edge of the top of the sheath, where the density of the sheath
is dropping off toward zero, can the thermal damping be small. Only such modes could
resonant with the rf wave along the anode.
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Thus the inclusion of thermal and pressure effects may well be physical-, reasonable
and is now being currently explored. We hope to eventually be able to calculate the
thermal effects on the NLS coefficients and expect that this would be able to give us
much better agreement between theory and experiment.
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10125 Torino, Italy

INTRODUCTION

This paper summarizes a new numerical approach for the nonlinear Fourier analysis of
space and time series of complex, nonlinear wave trains. The method, based upon the
periodic/quasi-periodic inverse scattering transform (IST), is a kind of nonlinear
generalization of the ordinary, linear Fourier transform. I focus on nonlinear wave motion for
shallow water waves as governed by the Korteweg-deVries (KdV) equation. IST may be
exploited to determine the numerical inverse scattering transform (NIST) spectrum of a
measured or computed wave train which is assumed to be periodic (or quasi-periodic) in
space or in time. The approach may also be applied to numerically construct complex
solutions to the KdV equation. I build on previous successes in the application of the periodic
scattering transform to the analysis of computer generated or experimentally measured data
[Bishop, et al,, 1986; Bishop and Lomdahl, 1986] [Osborne and Bergamasco, 1985, 1986]
[Osborne and Segre, 1990] [Flesch, et al., 19911 [Osborne, et al., 1991] [Osborne, 1991a,
1991b] [Osborne, 1992]. In particular I analyze examples of computer generated wave trains
and of measured wave data obtained in the Adriatic Sea, near Venice, Italy.

THE KdV EQUATION AND PERIODIC INVERSE SCATTERING THEORY

The Kortweg-deVries equation describes (among many physical applications) the
motion of small, finite-amplitude nonlinear wave trains in shallow water. KdV was the first of
many nonlinear wave equations to be completely integrated by what is now called the inverse
scattering transform [Zakharov et al., 1980; Ablowitz and Segur, 1981; Dodd et al., 1982;
Newell, 1985; Degasperis, 1991].

The dimensional form for the (space-like) KdV equation is given by:
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77, + co?7x + ani71x + 0'j =0 (1)

17(x, t) is the wave amplitude as a function of space x and time t. For shallow water wave
motion the constant coefficients of KdV are given by co = (gh)1/2 , a = 3co/2h and fl =

coh 216. Eq. (1) has the linearized dispersion relation o) = cok - Pk 3 ; g is the acceleration of
gravity, co is the linear phase speed and h is the water depth. Subscripts with respect to x and
t refer to partial derivatives. KdV solves the Cauchy problem: given the spatial behavior of the
wave train at t = 0, 17 (x, 0), (1) determines the motion for all space and time thereafter,

i7(x, t). Here we use periodic boundary conditions so that 17(x, t) = 77(x+L, t), L the period.
The most common experimental situation is to record data as a function of time at a

single spatial location; this implies the need to determine the scattering transform of a time
series, 11(0, t). To this end one may apply the time-like KdV equation (TKdV) [Karpman,
1976; Ablowitz and Segur, 1981]:

tlx + co'7t + a'77Tt + fliOttt = 0 (2)

where co" = 1/co, a' = -a/c 0
2 and fl' = -/3/C0

4 ; (2) has the linearized dispersion relation k
= co/co + (/3/co4 ) 0)3. TKdV solves a boundary value problem: given the temporal evolution
17(0, t) at a fixed spatial location x = 0, (2) determines the wave motion over all space as a
function of time, r7(x, t). Either periodic (17(x, t) = 77 (x, t + T)) or quasi-periodic boundary
conditions (there exists a T(e) such that I17(x, t+T) - 77 (x, t)0 < E for all t) are assumed
herein. TKdV is now routinely applied to the time series analysis of experimental data
[Osborne 1991a; Osborne et al., 1991].

The solution to the periodic KdV equation (1) may be written as a linear superposition
of nonlinearly interacting, nonlinear waves called hyperelliptic functions, puj(x; xo, 0):

N
An (x, t) = -Et + Y [2.j(x; xo, t) - E2j - E2j+1] (3)

j=1

The constant parameter ) = a/6 3. This is the first of the trace formulae for the KdV equation
[Dubrovin and Novikov, 1975; Flaschka and McLaughlin, 1976] and may be interpreted as a
kind of nonlinear Fourier series. The constant parameters E2j, E2j+l are eigenvalues of the
"main spectrum" of periodic theory as discussed in the next section; xo is an arbitrary base
point in the interval 0 -• x < L. The pj are the nonlinear oscillation modes of periodic KdV.
The pj spatially evolve according to the following system of coupled, nonlinear, ordinary
differential equations:

d/pj 2iojR 1/2(ulj)
-_ (4)

dx N
HI (/uj- Uk)

k=1
j~k

where

2N+ 1R (,j) = I- (Paj - Ek) (5)
k=1I

The aj = ±1 are the signs of the square root of R(pj,). The pj dynamically evolve on two-
sheeted Riemann surfaces; the branch points connecting the surfaces are referred to as "band
edges" and are denoted by E2j and E2j+1 . The pj lie inside an "open band," e.g. in the interval
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E• < 1 •j< E2j+1 , and oscillate between these limits as a function of x. Whea a pi reaches a
band edge (either E~j or E•.1 ) the sign oj changes and the motion leaps to the other Riemann
sheet. This fact, together with the strong nonlinear coupling occurring among the j,
presented considerable difficulties for Osborne and Segre [ 19901 in numerical integrations of
(4).

The temporal evolution of the jp is given by:

S= -2[P.r(x, t) - 2,uj dp. (6)

dt -x

where 17q/(x, t) is given by (3). The space (4) and time (6) ODEs evolve the p1(x, t) and the
nonlinear Fourier series (3) allows one to construct general solutions to the KdV equation. In
what follows I describe methods for numerically computing the oscillation modes p/(x, 0) at
a particular instant of time, t = 0. The requisite numerical methods are then christened space or
time series nonlinear Fourier analysis procedures [Osborne, 199 la].

Generally speaking I refer to the numerical determination of the main spectrum
(Ei; 1 5 i 5 2N+1) and the auxiliary spectrum (j (x.), arj = ±+1; 1 <j < N) as the direct
scattering transform (see details in the Section below). The computation of the hyperelliptic
functions uj(x; x., t) as solutions of the nonlinear ODEs (4)-(6) and the construction of
solutions of the KdV equation by the trace formula (3) constitutes the inverse scattering
transform. Herein I (a) discuss new numerical procedures for obtaining the direct scattering
transform and (b) show that the inverse scattering transform as obtained by numerical
integration of (4)-(6) (e.g. as considered by Osborne and Segre [19901) can be replaced by a
much simpler, more precise and faster algorithm.

THE PERIODIC INVERSE SCATTERING TRANSFORM

The spectral problem (the direct scattering transform) for KdV is the Schroedinger

eigenvalue problem:

YfXX + [A 7(x) + k] = 0 (k2 = E) (7)

where 17(x) = r/(x, 0) is the solution to the KdV equation (1) at an arbitrary time t = 0; k is the,
spectral wavenumber. Periodic boundary conditions are assumed so that 77(x, t) = 77(x + L, t)
for L the period.

Details of the inverse scattering theory will not be given here, but r..ay be found
elsewhere [Dubrovin and Novikov, 1974; Dubrovin, Matveev and Novikov 1976]. For
numerical purposes it is appropriate to consider a basis of solutions (c, s) such that [Flaschka
and McLaughlin, 1976]:Cc(xo) c'(xo) _ 10(8)

s(xo) s'(Xo) 0 1

The wronskian W(c, s) = 1 so that (c, s) is a basis set. The matrix a carries the solution
matrix from point x to x + L:

s(x+L) s'(x+L)) La2l a 22) s(x) s(x)

a is often referred to as the monodromy matrix.
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The so called main spectrum consists of eigenvalues Ej that correspond to the Bloch

eigenfunctions for a particular period L. The auxiliary spectrum is defined as the eigenvalues
for which the eigenfunction s(x) have the fixed boundary conditions s(xo+L) = s(xo) = 0. To

this end one has the specific spectral definitions:

Main Spectrum {Ei; 1 <i_<2N+l): (a, + 2 2 )(E 1

Auxiliary spectrum {/1u; I] _j N): a21 (11) = 0 (10)

[a0) = [sgn [aJ(E)- a 22(E)]E=ti 1 5j:5 N}

The eigenvalues (E4; iii; oj) constitute the direct scattering transform of a wave train of N
degrees of freedom. The inverse scattering transform, (3)-(6), then allows for the
construction of complex wave train solutions of the KdV equation.

THE NUMERICAL ALGORITHM

The numerical search for the scattering eigenvalues {Ee; /j; a) suggests the need for

the derivatives of the matrix aij with respect to the energy E. This is because one normally
uses a Newtonian numerical root-finding algorithm to determine the eigenvalues. Such a
procedure is always more precise when analytical expressions are available for the
derivatives. To achieve this goal, a matrix method for obtaining the evolution of the
eigenfunction V as a function of x and E for a particular wave train 77(x, 0) has been
developed. Key to this approach is the analytical estimation of derivatives of the matrix
elements with respect to E.

To this end the scattering equations are:

Vxx=-q V

Vxx•=q VE- V

where the subscripts refer to differentiation with respect to x and E; q(x) = -- lr(x) + E.
Writing (11) in four-vector notation and using a Taylor series expansion for the solution to the
scattering equations (11) one obtains:

VX (x+Ax) - H V, W(x) (12)
ViE (x+ Ax) V/4(X

'JXE (x+AX)) ) VXE (X),

where

H T 0(13)H= TE T

Each element of H is a two-by-two matrix. The matrix 0 has zero for all its elements and the
other matrices are given by
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( cos(ixAx) sin(icAx)

T K (14)

-,"sin(KAx) cos(IcAx)

and

_Ax sin(Kzlx) Ax cos(IcAx) sin('cAx)

c)T 2K 2 K2  2 c3
TE =-= Ax cos(cAx) sin(KcAx) Ax sin(KAx) (15)

2 2K 2K

for K = (q)l/2 = (b;ri(x) + E)1/2. While K may be either real or imaginary, the matrix TE is
always real with determinant 1. This property is exploited in the numerical algorithm below.

As in previous numerical problems of this type I assume the wave train t7(x) has the
form of a piecewise constant function with 2M partitions on the periodic interval (0, L),
where the discretization interval is Ax = L/2M [Osborne, 1991a]. Each partition has wave

amplitude i1,g (1 < n < 2M) which is associated with a discrete value of the spatial variable xn
= nAx. The four-by-four scattering matrix M can then be defined:

-M
M= J H( 07, Ax) (16)

n=M-1

The initial conditions of the basis (c, s) at the base point xo are given by:

(c (xOs (s O
c'(xo) 0 s'(xo) (17)

cE (Xo) } /s (XO) 0
c'- (Xo) 0 0

From the definition of the matrix aiq one has:

{ ij= (c(x+L) c'(x+L) c(x) c'(x)l (18)

s(x+L) s'(x+L) s(x) s'(x))

Thus at x, one finds

-I(a + a22)= (M11 + M22) (19)

aO2t = M1 2  (20)

while the derivatives are given by

r- j (al + a 2 2) = (M3 1 + M 42) (21)

EU = M32 (22)

Implementation of the Numerical Algorithm

Because K = (;ar(x,O) + k2)lfl can be either real or imaginary, but not complex, the
matrix H is always real. This result allows implementation of an algorithm which is entirely
real. The following relations have been used in the computer code:
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I cos(jeAx) if K2 >O
I T (23)

1cosh(ieAx) if K~2<0

rsin(c'4x) if K2ŽO

1 2 (24)

sinh(eAx) if K2<0

= icsin(KAx) if K2 >02

T21 K'sinh(IcAx) if K2<0

where

oe qILtl + k2i =(26)

and analogously for the matrix Tp.
The construction of complex solutions of the KdV equation by (3) is carried out by

computing the auxiliary spectra <x(x, = x,) for the 2M different base points xo = xM...x, x2,
... XM_1. This is done by computing 2M different monodromy matrices (16) which differ

from each other by a horizontal shift Ax in the wave train 17,,. This procedure arises from the

following similarity transformation which is easily seen from (16):

M(x.,t, E) - H(ijn, E) M(xn, E) H(ri,, E)r' (27)

The latter expression relates the matrix M(x,,+., E) at a point x,,+i to the previously computed
matrix M(xn, E) at x. for a particular value of E = k2 . Values of the auxiliary spectra
(p{ (xn) } for each x. are computed from the matrices M(x., E). Knowledge of the auxiliary

spectra at every point x,, allows reconstruction of the wave train 21(x,,) via a discrete version
of (3):

N
177(x,) = -E 1 + X[2Lj(x,,) - E2j- E2j+,] (28)

j=1

for n=-M... 1,2,...M-1. These are finite-term nonlinear generalizations of Fourier series for

the discrete wave train i7(xn). As indicated by the notation each nonlinear oscillation mode

{(Aj} implicitly depends upon the associated wavenumber kj of the mode. The kj are

theoretically given by the simple relation kj =jAk, Ak = 2rolL; surprisingly these are exactly
the same as for the linear Fourier transform. The IST spectrum then consists of the widths of
the open bands of the Floquet discriminant, aj = (E2j+1 - E2j)/

2 , graphed as a function of kj.

EXAMPLES OF NONLINEAR FOURIER ANALYSIS

I give three examples indicating how the algorithms discussed herein can be used. The
first example shows how to construct solutions to the KdV equation using the numerical
scattering transform (Fig. 1). The second example shows how the numerical IST can be used
to analyze a computer generated wave train (Fig. 2). The last example shows how to analyze a
typical time series recorded from the ocean (Fig. 3).
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Fig. 1 illustrates the numerical construction of a three degree-of-freedom wave train. In
panel (a) are the hyperelliptic functions pj, j = 6, 9, 11; in the present case the gj are
constructed from a rather arbitrary selection of the eigenvalues E2j, E2j+1 . The linear
superposition of the three oscillation modes gives the solution to KdV as shown in the upper
part of panel (a). Note that the hyperelliptic oscillation modes are highly non-sinusoidal in
appearance due to nonlinear effects. In panel (b) are shown the amplitudes of the linear
Fourier modes (solid line) and of the three hyperelliptic modes (vertical lines). Comparing
these results one concludes that only three nonlinear oscillation modes (three j,(x)) are
required to describe the motion, while instead the number of linear Fourier modes is quite
large (- 50).

.sik~qeae 'a (°°f

6 ý - 10'

j• 4 13

q•x) -i1bdo-Lom

-1

oOsodison Mode,

--- k--- -ci-

Figure 1. Synthesis of a wave train solution to the KdV equation. In (a) three hyperelliptic function

oscillation modes are linearly superposed to give the solution to KdV. In (b) are graphed the linear Fourier
tranform of the wave train (solid line) and the three nonlinear Fourier amplitudes (the pj~x), vertical lines).

In Fig. 2 I consider a computer generated wave train, a negative gaussian pulse as
shown in panel (a). The pulse is analyzed by the numerical IST algorithm. The Floquet
discriminant is shown in (b), the first six hyperelliptic oscillation modes are graphed as a
function of x in (c) and in panel (d) the amplitudes of the oscillation modes are graphed as a
function of wavenumber. Physically, a fully negative wave train on the infinite line has only
radiation modes in the infinite-line IST spectrum for KdV. The six hyperelliptic functions
shown in Fig. 2(c) are the dominant modes in the periodic radiation spectrum.

As the final example I consider results recently published by Osborne et al. [19911 with
regard to the analysis of nonlinear wave data obtained in a measurement program in the
Adriatic Sea about 10 km from Venice, Italy. The data were recorded in 16.5 m of water on
the research tower of the Italian National Research Council (Consiglio Nazionale delle
Ricerche). A typical measured wave train, a 500 point time series, is shown in Fig. 3(a). A
data set was selected for which most of the wave energy was in the dominant direction of
propagation; only 2% of the wave energy was perpendicular to this direction. This insured
that the waves were essentially unidirectional. The significant wave height (average of the
highest one third waves) is Hs = 3.0 m and the dominant period Td = 9.1 sec.
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Figure 2. A negative gaussian pulse, assumed to propagate according to the nonlinear dynamics of the KdV

equation, is shown in (a). The Floquet diagram is shown in (b) and the six most energetic hyperelliptic

oscillation modes are graphed as a function of the spatial variable x in (c). The amplitudes of the oscillation

modes (widths of the open bands in the Floquet spectrum) are graphed in (d).

On the basis of the Ursell number, Ur = 2gHsTd2/4h2 - 8, the Adriatic Sea waves may
be judged to be mildly nonlinear. The linear Fourier spectrum is shown in Fig. 3(b); the result
is quite typical of measured ocean wave spectra. The Floquet discriminant is shown in Fig.
3(c). The spectrum divides itself into two widely separated regions of activity corresponding
to solitons (on the left) and radiation components (on the right). The IST spectrum is given in
Fig. 2(d) where the spectral components are graphed as a function of frequency. The radiation
spectrum is shown as a solid curve on the right, while the solitons are displayed on the left as
vertical arrows. About 10% of the wave energy lies in the soliton part of the spectrum. In the
originally measured wave train, the soliton components are obscured by the radiation modes,
e.g. solitons reside in the spectrum, but they are not directly visible due to the presence of the
energetic radiation components. The soliton dynamics are physically significant, but not
directly visible by an observer of the measured wave train. Nevertheless, using the numerical
methods described herein, we are able to locate the solitons and to explore their dynamics.
This is done by a kind of nonlinear filtering. Returning to the spectrum in Fig. 3(d) one can
think of each component (as a function of frequency) as contributing to the nonlinear Fourier
series (28). By deleting the terms corresponding to the radiation modes, and then summing
the remaining terms for the soliton part of the spectrum, we obtain only the contribution that
the solitons make to the measured nonlinear wave train. The result of this numerical
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calculation is given in Fig. 3(a) at the same scale as the measured time series. We see a long,
low amplitude train, consisting of nine nonlinearly interacting solitons. We have therefore,
using the numerical inverse scattering transform as a data analysis tool, found the solitons
hidden in a sea of background radiation. An important physical result is that the solitons tend
to be phase locked beneath the maxima of the wave packets. I am personally convinced that
this fact provides an important clue to the eventual understanding of the behavior of nonlinear
wave dynamics in the Ursell number regime under investigation. Theoretical understanding of
these results is, however, still lacking.

C'A• ....................... •.............
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Figure 3. Numerical IST analysis of an experimentally measured wave train in 16.5 m water depth in the

Adriatic Sea, about 10 km offshore Venice, Italy (a). The linear Fourier amplitudes are graphed in (1b). In (c)

the Floquet discriminant clearly shows well-separated regions dominated by solitons and radiation. The

nonlinear Fourier (IST) spectrum is shown in (d), where nine solitons are present in the spectrum together

with a strong radiation component. The radiation has been filtered from the measured signal and the resultant

soliton train is then graphed beneath the measured wave train in (a). Osborne, et ai., 1991, Phys. Rev. Lett.
64,No. 15:1733.

CONCLUSIONS

The periodic scattering transform for the KdV equation is exploited to analyze computer
generated and experimentally measured data. The method gives rise to new physical
understanding for the propagation of complex wave trains governed by KdV. I expect that
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many surprises await further application of the approach to a wide variety of physical
situations.
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SOLITONS IN DISCRETE SYSTEMS

Morikazu Toda

5-29-8-108 Yoyogi, Shibuya-ku
Tokyo 151, Japan

INTRODUCTION

Since nonlinear dynamics has been developed so widely that it is nearly impossible
for me to chcose appropriate topics in a reasonably impartial way avoiding dogma
and prejudice even limited to the theories related to solitons in discrete systems.

This time, though it looks a little out of scope of the present title, let me begin
with some historical stories how I happened to find the integrable lattice, the expo-
nential lattice or the Toda lattice, and its lattice solitons. This is because I think that
the story of discovery may be of some help to those who are searching some way of
breakthrough in their researches. After that, explanation of other topics will also be
given.

Then, in the latter half of my talk, I will present my comparatively recent finding
that the motion in an exponential lattice looks as if it is composed of independent
exitations, which are different from ordinary solitons. This seems asymptotically exact
in the limit of very long lattice, and these excitations are definitely classified into two
modes; harmonic or phonon mode and nonlinear or so to say pseudo-sohton mode.
I found these modes by looking at the partition function of the exponential lattice.
But the existence of such excitations, especially the pseudo-solitons is still an open
question.

EXPONENTIAL LATTICE

I remember that it was around 1957 when we begun to have a group, called the
lattice group, of physisists in Japan, who are particularly interested in exact solutions.
We were stimulated by the computer experiments just started, which revealed that
conventional perturbation method sometimes failed in grasping the specific feature of
phenomena such as the localized modes around impurities, (Dean 1955), enhancement
of heat flow due to nonlinearity of the interaction between lattice particles (Payton
et al., 1967), and so on.

My study of nonlinear systems was put forward when I found papers by Ford
(1961,1964). He numerically studied nonlinear lattice with a few particles, and clar-
ified that certain one-dimensional nonlinear lattices marvelously sustained the char-
acter of linear modes. (His study was initiated by the famous computer experiments
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by Fermi et &1. (1955). But I could not see these paper at that time). From his re-
sults, I thought that there would be a lattice model with some particular interaction
between particles which would admit exact periodic wave solutions and possibly other
solutions.

My strategy was as follows (Toda 1967). Firstly, we consider the equations of
motion of an infinite lattice

mi.= -(z. - z..-) + O'(z.+1 - Z.), (1)

and linearize the interaction terms by rewriting Eq.(l) as

mi,, = 2s,. - sn- - s ,+, i.= -O•( 3 )/O', (2)

(r,. = z,X - X,-I). We assume that the last equation affords single valued solution

. = -X(P.)lm, (3)

to have
d

= -2s. + sn,, + s.+,. (4)

which are called the dual equations of motion.
Secondly, the interaction O(r) is expected to be something like the interatomic

potential, which is harmonic for small oscillation, and 0(r) must not include param-
eters such as the amplitude, frequency, or wave-length which characterize particular
solutions.

Lastly, I expected simple analytic solutions. Several candidate functions were
examined. Finally I noticed some similarity between Eq.(4) and the equation

2- ,. n, = sn'(u + v) - sn2 (U - v). (5)
0u I - V- sn2 U sn2V

Here sn, cn, dn are Jacobi's elliptic functions of the same modulus k. We put

s,,(u) = cij dnu2 u du - E-U
0 2K

u = (vt ± 7)2K, v = -2 (6)

(c, v, A are constants, E = E(k) and K = K(k) are the complete elliptic integrals of
the 1st and 2nd kind), to find that the periodic function s,1(u) (with the period 2K)
satisfies

c d log~l 1" .] = -_ + sn+, S- (7)
-Kv- dt c2Kv(I 1  -+ )

(sn2(2K/A) K

Therefore Eq.(4) is satisfied when we assume that

( E
c2Kv - 1 -J I+ a,

sn2 (2K/A) K+ K
c m

2Kv T '

X -r= m o, 1+ in) + ma,
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where a, b and o, are constants independent of A and k.
The inverse function of X(i) gave the interaction potential of the nice form,

O(r) = aea-'-, + a(r - a) + const., (8)

which led to the equations of motion conveniently written as

mr,. = a{e-b(N'--O ) - e-b(O-+'-N-)}, (9)

or

a+¥i. InS-(- + S+l - n), (10)

and the periodic solution ( lattice cnoidal wave)

e-' br. (2Kv)2{dn 2[2(v )K] - (1e-b/m-=AabK

with the dispersion relation

2K!' ra -1 + E (12)
K m/ sn2 (2K/A) K

Thus the lattice and the periodic solution were obtained at once.
Taking the long wavelength limit A --+ oo, keeping a = 2K/A finite (k 1 1), 1

derived the soliton solution (Toda 1967)

-- sech2 (an L sinh a. (13)
ab M

I immediately recognized that the soliton solution could be written in terms of

sech 2u = (92 log coshu,
OU2

and was led to see that two-soliton solution were obtained as a seconh ..erivative of
simple certain functions ¢ (Toda, 1969) in such a way that

m •
e- b--1= M lo2 .(14)

abt2log Ik.

Later it was found that multi-soliton solutions in general could be written in this
form.

The integrable character of the exponential lattice was numnerically demon-
strated by Ford (1973) and Saito (1973), and it was analytically shown (Henon,1974;
Flaschka,1974) that the exponential lattice of N particles had N independent con-
stants of motion, which are in convolution (Manakov 1975). Therefore the lattice is
integrable in Liouville's sense. The method of integration for the infinite exponential
lattice was shown by Flaschka (1974) by using the inverse scattering transform, and
by Hirota (1976) by his direct method. The method of solving the cyclic lattice was
clarified by Date and Tanaka (1976), and Kac (1975).

The development of the theory of exponential lattice is well-known (Toda, 1989).
We may refer to other ways of integration, Bicklund transformation, generalized
lattices including two-dimensional lattice, relation to integrable continuous systems
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such as the KdV equation, study of nearly integrable systems, the Bethe ansatz,
quantum lattice, and so on.

Fermi et al. (1955) discovered recurrence to initial state of some nonlinear lat-
tices. Their model systems were not exponential lattice: they had cubic, quartic or
broken linear nonlinearity. For these systems, it has been shown later (Saito et al.,
1970) that when the parameter responsible for nonlinearity (or the initial energy) is
increased beyond a certain threshold, stochastization of motion suddenly takes place,
just like breakdown.

If the interaction force between particles vanishes when the separation gets too
large, the lattice may be broken to pieces (chopping phenomena) by reflection of
sobitons at free boundaries (Toda et al., 1976).

Though the problem of thermal conductivity is very old, it is not yet fully clarifies
(Toda, 1979). There are at least four factors to be examined. They are effects
of (1)impurities or defects, (2)nonlinearity, (3)dimensionality, and (4)the enormous
number of atoms in real materials.

PARTITION FUNCTION

It is several years since I found a very strange but interesting formula related
to the exponential lattice. It is that the motion in the lattice can be asymptotically
decomposed into harmonic and nonlinear excitations. That is, the configurational
part of the partition function Q(9) per particle,

Q j) =- O exp{- 6 (e-' - 1 + r)}dr. (15)

(in dimensionless form) can be written as (see APPENDIX)

U0 1-exp(-0~21r tn(16)

For a lattice of N particles, the partition function is QN(i)) - {Q(#l)}N. Writing
N = 2n, we see that the partition function for large N can be written asymptotically
as

QN(O)= (2J )' N121 - x(-8,j

j=1 •=F2irN N12

where (V ) RI~i ~~ (17)
where

e= 2rtanNjr (j = 1, 2,..., N/2). (18)

In the r.h.s. of Eq.(17), the factor V is the partition function of a harmonic
oscillator. The second factor, namely

N12

e40"(•) - T (1- e-ei) (19)
j=1
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should be resp.onsible for the nonlinearity of the interaction.
As a matter of fact, for low temperatures/3 1/kT -- o0, where nonlinearity is

not important , we have
eNCl(O) 1.

And, for high temperatures /3 = 1/kT -- 0, we have

eV NI=12 I )N/2

/j 2

so that Q(/3) ý_ 1//3, which coincides, as it should, with the hard sphere limit

f e-Odr = -

Thus Eq.(15) indicates that the motion in the lattice consists of harmonic oscilla-
tions and nonlinear excitations Ej, which is quite different from the ordinary solitons.

If such nonlinear excitations really exist, they may be called pseudo-solitons, or non-

linear modes.
When the one-dimensional lattice is under an external pressure P, we can make

use of the effective potential qOp(r) (we return to original units)

Op(r) a (e - 1+ r) + Pr

= + "b leb(1 ) - 1 + b(r - rr) (20)

where

e- 1 + -,P

a

00 -1 + ) lo (I P).(21)
a b= a -a

With these modifications, we have the partition function QN(Z) = {Q(z)}N,

Q(z) _ 1e-0-°0i0 ' (s), (22)
b z

where
1 N/2

(z)= -N log(o - e-"') (23)

with ej given by Eq.(18) and

z a (I+ P).(24)

The factor V/•--[z on the r.h.s. of Eq.(22) is responsible for the harmonic part of the
potential

Op(r) "" (a + P)b(r -- ro)',

and Tq(z) for the nonlinear part, or for the pseudo-solitons.
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The lattice expands with increasing temperature. The change in the average
distance between particles is calculated as

-00(r - ro) exp{-#Op(r)}dr
r -f . exp{ -P3ep(r)}dr

p 1
2(a (kT + ), (25)

where the first term kT/2(a + P) is due to the dependence of the harmonic part of
the potential on the pressure P, and the second term is due to the energy E due to
the pseudo-solitons, which is given as

N12a~+) PO()
S '- j =_N(1+ -N (26)

j=O

The limiting values of E are

( N/20 (T- oo)

S-- 
t o (T - o)

Thermodynamic quantities, such as entropy, the Gibbs free energy and so on,
can be written in terms of qi(z) and E.

APPENDIX

This appendix is to derive Eq.(16). Firstly, we notice that Q(z) satisfies

Q(z) = e--(- )Z+,Q(z + 1).

Taking the logarithm and summing up, we obtain

log Q(z) - log Q(z') = -(z' - z) - z log z

-{log z + log(z + 1) +-.. + log(z' - 1)} + z' log z'

= log xdx - flogz + log(z + 1) +... + log(z' - 1)}.

Using the fact that

log Q(z') -. log -) (z' -- 0o)

we get (z' -- co)

logf FTrQ(z)} = I logX dX - log z + log(z + 1) +... + log(z' - 1) + log z'}.

Now, noticing the fact that e±2Tri - 1 vanishes at • integer in the complex ( plane,
we integrate f(()/(e--2 "' -_ ) in the upper half plane and f(()/(e2 ri( -1) in the lower
half plane, along indented rectangle whose corners are ni, n2 , n2 ± co0, and nj ± oi
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(n, and n2 are integers). Assuming f(C) to be analytic in the whole (- plane, we thus
obtain the formula (Plana's expansion)

f(ni) + f(n, + 1) + + f(n2 - 1) + f(n2) - f(,)dx
2 21 ___d_

+ - I I{f(n 2 + iY) - f(n1 + iy) - f(n 2 - iy) + f(n" - iy)}.

We put
f(n)=log(z+n), nj= 0, z+n 2 ==z'

to have
logx dz -I{Ilogz +log(z + 1) +-.-+ Ilogz'I

= 2f arctan(YIz) dy (z' .-- oo).

Therefore, we obtain

log{ ±zQ(z)}-2jfo arctan(y/z) dy,

f - /2 log{1 - exp(-27rztanO)}Id

which can be transformed to Eq.(16).
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ABSTRACT

In searching for low-dimensional structures in the rotating driven cavity problem we
use a Galerkin approximation to project the infinite Navier-Stokes equations into a finite
dimensional subspace spanned by a number of basic modes. The resulting system of
ODE's, where the variables are the amplitudes of the basic modes, is analysed using
bifurcation theory. By this technique we established, with only 25 modes, the early
transition to an oscillatory motion as a supercritical Hopf-bifurcation, and in particular we
estimated the critical Reynolds number within 0.2% of the Reynolds number due to the
full numerical system in 40000 degrees of freedom. Finally, we present the spectrum of
the full numerical system in the range from stationary to chaotic fluid flow. This spectrum
diagram will serve as the basic reference system through out all investigations.

INTRODUCTION

In the rotating driven cavity problem the fluid flow is created by letting one end cover
of a closed, fixed cylinder with height, H, and radius, R, rotate with a constant angular
velocity, L With scaling time a,' and length R, and denoting the cylindrical coordinates as
(xy), x e [ 0,X=H/R ] , y e [ 0,1 ], and the corresponding velocity components as (uv), we
obtain in the circulation, r, vorticity, (o, and streamfunction, V, formulation of the
axisymmetric Navier-Stokes equations, see Daube & Sorensen (1989),

~ +~!L I ar) 40(ur + __ - Y.(1•" Re x--2- )y" Ya]"I€x + y
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Eqs. (1-4) are seen to depend on the Reynolds number, Re = R2jrv (v the kinematic
viscosity). The boundary conditions, no slip, depend on the aspect ratio, X = H/R.

The first comprehensive, experimental results were performed by Escudier (1984).
By changing Re and X he found up to three stationary vortex breakdowns. Lugt &
Haussling (1982), Lopez & Perry (1992) and Daube & Sorensen (1989) confirmed some
of these results numerically, and increasing the Reynolds number even further, Sorensen
& Christensen (1992) clarified that transition to turbulentlike motion in the axisymmetric,
numerical system is associated with various bifurcations. Recently, Christensen et al.
(1992) used a Proper Orthogonal Decomposition technique (POD), Sirovich & Sirovich
(1989), to identify the early transition as a supercritical Hopf-bifurcation. In the present
study only the Reynolds number, Re, is to be varied, the aspect ratio, X, is fixed to 2.

THE DYNAMICAL SYSTEM

Time series analysis of stable solutions to the full numerical system has given the

following dependence between basic frequencies, o, and the Reynolds number, Re. See
figure 1.

A
to .35 3

.3 * *f e

.25 * s ome

.05 0

0-
2000 3000 4000 5000 6000 7000 Re 8000

Figure 1. Spectrum diagram with basic frequencies.

The system is unlocked, because it is not driven by an external force, thus the frequencies
change continuously between bifurcations. These bifurcations are seen as discontinuites,
for example at Re = 2544, appereance or disappereance of basic frequencies, see Re =
6300 and Re = 6550, respectively, figure 1. Following we give a first description of the
transition from stationary to turbulentlike motion based on the spectrum diagram.
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Stationary solutions. x = x(Re): 0<Re<2544.
-. Re: 1500,1750 Stationary bifurcations, vortex breakdowns, Escudier (1984).

Re: 2544 Supercritical Hopf bifurcation.
Periodic solutions. x = x(Re.m.xn: 2544<Re<6300.
- Re: 3500 - 4200 Hysteresis.
- Re: 5100 - 6250 Periode doubling (5100), change of solution (5150),

periode tripling (5750-6000), periode back-tripling (6000-6250).
- Re: 6300 Naimark-Sacker bifurcation to a torus.
Quasi-eriodic solutions. x = x(Re.pofl, xn): 6300 < Re < 6550.
- Re: 6375 - 6450 Periode doubling torus-to-torus bifurcation.
- Re: 6550 Naimark-Sacker bifurcation to a periodic solution.
Through a chaotic region: 6550 < Re < 8000,
- Re: 6550 - 6580 Periode back-doubling.
- Re: 6930 - 6935' Naimark-Sacker bifurcation to a torus.
- Re: 6935 - 6940 Torus-to-chaotic transition through an unstable attractor.
- Re: 7500 - 7520 Chaotic to periodic transition.
- Re: 7600 - 7750 Periode back-doubling.

THE PROJECTION METHOD

A simple spatial discretization of second order in equations (1-2) is used to obtain a
first formulation in ODE's in order two times the number of nodes in the numerical grid,
that is order 40000. Thus, denoting X as (7,po), utilizing the linearity between (I,co) and
u,v,AV through a discretization of the definition and the Poisson equation (3-4) we have

X=F(ReX), X e R4°000. (5)

Now the POD technique is applied to obtain an orthogonal base system used in the
Galerkin approximation. The technique has been generalized in order to operate with
known solutions in the bifurcation theory. Then letting for example ni basevectors,

-(n-l)... To, spann some stationary solution space Sl,..,Sn•, and letting m principal
basevectors, 4ps,.... m, represent the n2 snapshots, X1,..., Xn2, of the full numerical system
the m'th most describing Galerkin approximation is written,

m

X(t) = XS + • ai(t) qpi, (6)

where m < n2,XS = S1, and a = 0 for Re = Res. Substituting (6) into (5) and dotting with
the orthogonal basevectors, pi, i = -(nI-1),...,m, we finally have in the system of ODE's,

S=b 0 + -Lb, +A 0 a+-L A, a+B(a,a), a Rn + (7)
Re Re

a(Re = Res) = 0, stationary solution. (7a)
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Figure 2. Determination of critical Reynolds number by different models.

bo, b, are constant, A0, At linear and B is a bilinear vectorfunction. Following we present
the determination of the critical Re as a function of the dimension m for different models,
Christensen et al. (1992). From m = 25 the system of ODE's gives excellent results.

CONCLUSION

With the present projection method it has been possible to reduce dramatically the
dimension of the non-trivial rotating driven cavity problem, and to identify the first
transition from a stationary to an oscillatory motion. This is done as a supercritical Hopf-
bifurcation at a critical Reynolds number, Re = 2544, and with a frequency, eo = 0.24,
which are in excellent agreement compared to the full numerical system (see Christensen et
al., 1992). The projection method is by no means confined to a local description of a
simple phenomenon in dynamical sense. In fact, Sirovich & Rodriguez (1987) were able to
follow the Ginzburg-Landau equation through a chaotic region with only six modes.
However, considering the complexity of the given problem and the present results, one
must expect a need for a somewhat larger number of modes. Thus, a projection method to
describe the next transitions is in preparation.
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INTRODUCTION

Incompressible, inviscid two-dimensional flows away from boundaries possess special sta-
tionary solutions in the form of coherent, isolated vortical structures. These solutions can
be classified in terms of the spatial moments of the vorticity distribution about their centers.
Flows involving several such structures can be seen in nature and in the laboratory. In case
the structures remain well-separated, they can be described in terms of a few collective vari-
ables (strength and location for symmetric monopoles, plus eccentricity and orientation for
elliptical ones, and similarly for dipolar structures). The vorticity, distributed among these
structures, acts as a source for a collective velocity field, which away from the structures
is harmonic. A small viscosity does not change the dynamics of these free-space structures
substantially. The resulting dynamical system has been studied extensively both analytically
and numerically.

Close encounters between structures cannot be fit into the narrow confines of the low
dimensional theory. However, the theory seems adequate for the asymptotic behavior, away
from close interactions. Thus, well defined isolated structures collide, and after a period of
rapid readjustment new structures emerge that can again be described in terms of a few
collective variables. Such phenomena have been studied extensively by numerical simulations
in the last two decades, but an analytical theory for the scattering problem is still lacking.

In real flows one always must deal with boundaries, and although the vorticity field can be
initially confined away from walls, momentum carrying structures such as dipoles will eventu-
ally approach walls and interact strongly with them. Since vorticity in unforced flows can only
be created at solid walls, no-slip boundaries offer interesting possibilities for enhancement of
the vorticity field and the introduction of novel structures and phenomena into the flow. In
this paper we shall attempt to characterize some of the basic properties of this interaction by
studying dipole collisions with walls both numerically and experimentally.

NUMERICAL RESULTS

The flow field is described by the Navier-Stokes equation

eawT + Jpw, ) = VV2W, (1)
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Figure 1. Numerical results showing contour plots of the vorticity field for a dipole with
initial Reynolds number Re = 2400 interacting with a convex wall. Dashed lines indicate
negative values.

T=2.0 T=3.0 T=4.0 T=5.0

Figure 2. Same as figure 1 for a dipole with Re = 4000 interacting with a concave wall. At
T = 2 the rebounded dipoles are already formed.

combined with the Poisson equation

V =0 (2)

where

V x i= 0 = w , it= V x i, J(f'g) = Of 19 89 O(3

Here, h is the velocity, w the scalar vorticity, 0 the stream function and v the viscosity.
The flow field is subject to no-slip conditions, so that it matches the wall velocity at the

boundaries. This leads to both Dirichlet and Neumann conditions for the stream function
0', so the Poisson equation is overdetermined. This implies that the vorticity field cannot be
arbitrary, but must satisfy certain integral constraints so that it is compatible with the no-slip
boundary conditions.

The Navier-Stokes equations are solved numerically in annular geometry employing a fully
dealiased, spectral scheme based on Fourier-Chebyshev expansions. These allow very high res-
olution of boundary layers. Precomputed solvability constraints are enforced on each Fourier
mode of w. A more detailed description of how these solvabilty constraints are implemented
in the numerical scheme is given by Coutsias and Lynov1. Various global accuracy ch-.-.,: are
implemented to diagnose the performance of the scheme: the conservation of total cirt "';,•..in
is monitored, while comparisons are performed between the computed and theoretically pre-
dicted viscous evolutions for the total energy and total enstrophy (or squared vorticity). In
all the simulations reported here, these were found to be in close agreement.

In our numerical studies, a Lamb dipole was made to collide with both concave and convex
curved walls. Examples of the numerical results are presented in figs. 1 and 2. Qualitatively,
the picture is not too different from that seen in collisions with flat walls, as it has previously
been reported by several authorsl- 3. We summarize here the main aspects of this interaction:
As the dipole approaches the wall, it induces opposite-signed wall vorticity layers. These
thicken due to viscosity. At minimum approach, these wall layers roll tightly into secondary
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Figure 3. Results from the rotating tank experiment showing dye traces for a dipole with
Re ; 2500 interacting with a concave wall.

vortices and couple with opposing primary lobes. Wall vorticity production continues, feeding
the secondary vortices through vortex sheets, as the former are being advected by the pri-
maries. At a critical instant, detachment of the combined structures occurs. We believe this
is connected to the accumulation of sufficient circulation in the secondaries, so that the new
structures are close to the 'minimally interacting configuration' (rolling dipoles, see below)
with primary to secondary circulation ratios close to 2.5.

As the Reynolds number (defined as Re = udo/u with u and do the dipole speed and
diameter, respectively) increases, the secondary vortices become tighter and the circulation
ratio of the detached dipoles decreases. The tighter, stronger secondary vortex devours part
of the primary into an accretion ring, which is dissipated quickly. The rebounding dipoles
circle around towards a second, double collision with the wall, initiating a complex interaction
phase that may eventually lead to the ejection of a new ('baby') dipole, composed entirely of
wall vorticity. The topology of this process (e.g. ejected dipole is composed of wall vorticity
from the first or second detachment etc) is influenced quite sensitively by the presence of
distant boundaries (e.g. the opposite channel wall), and by wall concavity. Asymmetric or
angle dipole-wall collisions introduce further complications, e.g. angle collisions appear to
enhance enstrophy production. These results will be reported elsewhere.

In all cases investigated, and in all stages of the process, vorticity was distributed primarily
among a few isolated vortical structures, while ribbon-like forms (vortex sheets) appeared but
dissipated quickly or rolled into tight vortices.

EXPERIMENTAL RESULTS

The experimental setup consists of a square tank with a flat bottom and side walls of
length 1 m. Into this tank various cylindrical wall structures can be placed. The tank is
filled with water to a level of 15 cm and brought into solid body rotation with an angular
frequency of 0.63 s-'. A dipole is created by injecting a jet of dyed water into the mid-plane
of the water for a period of 5 s. Our setup is similar to that described by Flierl et al.4 , who,
however, did not investigate dipole-wall interactions. After a short transient period following
the jet injection, the solid body rotation causes the flow to be very nearly two-dimensional as
described by the Taylor-Proudman theorem.

In figure 3, the propagation of the dyed water inside and trailing a dipole colliding with a
concave wall is shown. We see that the experimental results show the same topological flow
evolution that was found in the numerical simulations.

DISCUSSION

A generic outcome of our numerical and experimental studies was the apparent evolution
of the initially complex interaction process into a simpler state in which most of the remaining
vorticity is concentrated near the wall, seemingly trapped in what can be called 'surface states'.
These appear to be long lived, robust structures in which the original vortex couple is separated
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by halos of oppositely signed, wall generated vorticity. For the time intervals studied, of order
3-4 rebound times, the halos still contain several small vortices rotating about the primaries
which are only slowly evolving. These surface states can act as enstrophy sources, pumping
wall vorticity away from the wall. This process is apparently enhanced by the presence of
even distant no-slip walls quite dramatically'. Although our present simulations have not
been advanced sufficiently in time, we feel it is fair to say that ultimately advective effects
will decay, leaving quasi-stationary structures that evolve only through dissipation. These
structures, being long lived, play an important role in subsequent flow events, as they can
alter and enhance the domain of influence of a no-slip wall. A full understanding of these
structures requires a careful formulation of the initial-boundary value problem of a vorticity
concentration near a wall, and with the added complication that one is really considering
a state that is decaying in time, even if this decay is very slow. Indeed, it seems that the
ultimate evolution of these structures is a quasi-stationary state where all time evolution is
dissipative, with no addvection present.

Another special class of wall-bound structures appear to play an important role in the
process of vortex rebound. Clearly a structure compatible with a line or circle of zero ve-
locity could coexist with a rigid boundary and produce no strong boundary layers. As good
candidates that fulfill this property approximately we consider dipoles with special vorticity
balance to create a velocity field with a stagnation point on their perimeter. Such structures
rotate but the point of contact with the circle circumscribed on their trajectory corresponds
to zero fluid motion. Thus, in a setting where they move near a wall at such distance that
they simply touch the wall tangentially, there should be minimal disturbance of their field
due to the no-slip condition and, consequently, minimal generation of boundary layers. Since
the velocity field about a dipole decays like 1/r2, the disturbance caused further away should
also be fairly small. A special dipole in this category is the unbalanced Lamb dipole, with
vorticity given by

w(r, 0) = c - Jo(71ur/ro) _ 2uy7l Ji(T1,r/ro)cos0
(Jo(,Yi0 I ) roJo(711)

inside the circle r < ro and zero outside. This dipole gyrates about a point at distance
R = 2u/c° from its center with angular velocity u/R = c°/2. In the special case R = ro we
obtain the 'rolling dipole' which rotates about a point on its perimeter, and has zero velocity
on the antipodal point. For this dipole the ratio of circulations is 2.65 and we believe it
constitutes a fair approximation for the secondary dipoles emerging from dipole-wall collisions
at moderate Re (t 2000) and small wall curvatures.
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1. INTRODUCTION

In recent works'.2 the possible propagation of envelope solitons
having the nature of shear-horizontal (SH) elastic surface waves was une-
quivocally proved mathematically for an elastic structure likely to be
experimentally tested. This phenomenon may occur along a composite struc-
ture made of a nonlinear elastic isotropic substrate coated with a thin
"slow" linear elastic film. Couples of materials for which this is indeed
realizable were also determined. However, a strong decoupling hypothesis
layed dormant in that approach. Namely, it was assumed that the SH wave
in question remains decoupled from the so-called Rayleigh component,
i.e., that vectorial elastic component that is polarized parallel to the
sagittal plane (plane spanned by the direction of propagation X, and the
normal to the limiting surface N). This was considered in order to sim-
plify the analysis, but it does not hold true in all rigor. A simple way
to realize this fact is to recall what happens for bulk waves in nonli-
near isotropic (a fortiori anisotropic) elasticity (See Ref.3 , pp. 36-
37,. In that theory a longitudinal motion necessarilly accompanies a
transverse motion; e.g., one can write

o T v =0'

u v X, } (1.1)0 L U =r v. v.

where oT and aL are linear "transverse" and "longitudinal" (d'Alember-
tian) wave operators along x , v is the transverse component, u is the
longitudinal component , a subscript x denotes partial differentiation
with respect to x, and Y is a third-order elasticity coefficient. In an
asymptotic analysis where v = 0(e) as e goes to zero , u = 0(E 2 ) = 0(v 2 )
makes the system (1.1) fully consistent. In particular, there is no feed-
back of u in the v equation, while the longitudinal component u is exci-
ted through the second harmonic of v. If this is true for bulk waves,
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then the situation should be worst for surface waves as boundary condi-
tions to be applied at the limiting surface-although free of tractions-

usually couple both the longitudinal component u and ýhe remaining trans-
verse component w (so,-called shear-vertical (SV) component) to produce

what is commonly referred to as a Rayleigh surface wave4, in the linear

approximation. But then . according to (1.1), the SH component should
couple with the full Rayleigh one in nonlinear elasticity. This establi-
shes the frame of mind in which the present paper develops. From (1.1).
however, we shall still keep the idea that the SH component is primary,
for instance, being preferably entered in the system through a transducer

designed to that effect, while the Rayleigh component is only secondary.

being essensially generated by the former. Furthermore, only the SH com-
ponent a priori carries a dispersion effect due to the built-in vertical
layering ; but a straightforward generalization so as to include disper-
sion due , e.g., to discreteness, in the longitudinal component can be

proposed heuristically.
In all, the main result of the present analysis which is essential-

ly asymptotic in the manner of Whitham and Newell 5 - 7 , is that the complex

amplitude a of the slowly varying envelope of the SH component and the
real amplitude gradients (in the propagation direction) ni = u. and
n2 = wX of the Rayleigh components are in general governed by the fol-

lowing sys .-m (in the absence of dispersion in the Rayleigh subsystem)

e'ter normalization

iat + a, + 2 X IaI 2 a + (oL n, + 0L, n 2 ) a =0 ,

(n -) C2 (n 1 ) = - 1L (lal 2 ) ' (1.2)
tt L x xx.

(n 2 ) T n2 ) = - PT (la! 2 )
tt xx

where X is the real coefficient of self nonlinearity (of the SH mode) and

*eL , m , p.1 and P. are real coupling coefficients. For X 0 = r= = 0 .

this system is none other than Zakharov's8.9 system for Langmuir-ion
acoustic waves in plasmas, but with different physical interpretations.
We coined the naming "generalized Zakharov's systems" for systems such as

(1.2) and their associates. Two recent papers 0 ' 11 are devoted to the
analytical and numerical study of system (1.2).

2. DISSIPATION-INDUCED EVOLUTION OF SOLITONS

We consider first the evolution of envelope solitary waves in the

SH-dispersive a-system of (1.2) under the influence of dissipation (vis-
cosities IL and iqT ) in the nondispersive (n, , n 2 ) Rayleigh subsystem.
The two are coupled through the coupling coefficients pV and V. . In

spite of its appearance, system (1.2) still conserve the number of (SH)

surface phonons (or wave action)

In the analytical treatment1 0  which applies the balance-equation
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analybis 9 to the slow dissipation-induced evolution of the exact one-
soliton solution of the Zakharov system (for the sake of simplicity w = 0

= 0 in (1.2) . but this is justified' 2 ) although this system is not
exactly integrable, three different scenarii of evolution are shown to be
possible : (i) adiabatic (slow) transformation of a moving subsonic soli-
ton into the stable quiescent one, (ii) complete adiabatic decay of a
transsontc soliton with a small amplitude, and (iii) coming of the trans-
sonic soliton with a large amplitude into a critical state, from which
further adiabatic evolution is not possible. In the latter case a numeri-
cal investigation of the further evolution of the soliton is particularly
enlightening. In a general case, it is shown that it abruptly splits into
the stable quiescent soliton, the slowly d ,caying small-amplitude trans-
sonic one, and a pair of left- and righ-running acoustic pulses slowly
fading under the action of the weak dissipation. The abrupt splitting
seems to be a new type of inelastic process for a soliton, induced by
small perturbations.

3. SOLITON-SOLITON COLLISION IN THE GENERALIZED ZAKHAROV SYSTEM

The generalized Zakharov system (1.2), in the absence of viscosity in
the Rayleigh subsystem, admits both subsonic and transsonic one-soliton
solutions. The question naturally arises of the interaction (collision)
of such solitons (i.e. , whether they are indeed solitons), for instance
in symmetric soliton-soliton collisions. It was shown that the acoustic
losses are exponentially small unless the velocities are much larger than
the characteristic sound velocity (cL) in the Rayleigh subsystem. The
numerical simulation of the head-on soliton-soliton collision brings up
two basic phenomena : (i) the collision of subsonic solitons always lead
to their fusion into a breather, provided the system is sufficiently far
from the integrable limit (i.e., the NLS case) , and (ii) the collision
between transsonic solitons gives rise to a multiple production of soli-
tons (both subsonic and transsonic) and the quasi-elastic character of
the collision is recovered in the limit of large velocities. This is
illustrated in Figures 1 and 2

a b

Figure 1 - Collision-induced fusion of subsonic solitons into a breather
with acoustic emission in the Rayleigh subsystem : (a) Ju1

2 , (b) n .

57



aJ

Figure 2 - Comparison between the soliton-soliton collision for system

(1.2) close to the NLS limit (a), and the collision of two transsonic

solitons at high velocities in the generalized Zakharov system (b).

4. CONCLUSION

Our surface-wave problem is governed by a so-called generalized
Zakharov system at the thin film (interface).
It appears that the initial, purely mechanical, surface-wave problem
considered yields, a very interesting physical application which may be
of interest in signal processing (we have a mechanical analog of light
solitons guided by optical fibers).
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INTRODUCTION

A fundamental property of two-dimensional flows is the ability to support the existence of
longlived, isolated vortical structures. Vortices in the form of monopoles, dipoles and tripoles
are often encountered, e.g. in the atmosphere and oceans of large planets as well as in labo-
ratory experiments. Such propagating structures may trap particles and convect them over
distances much larger than their scale size. The understanding of their dynamical behaviour
is therefore of great importance for comprehending transport mechanisms.

The monopolar vortex is stationary in isotropic flows. The dipolar vortex may propagate
in any direction depending on the relative strength of the two vortices1 , while tripolar vortices
are observed to be non-propagating, but rotating around their center 2. For anisotropic two-
dimensional flows - i.e. on a rotating planet, where the anisotrophy is brought about by
the variation of the Coriolis parameter with latitude (the '/3-effect') - monopolar vortices are
non-stationary and couple to linear Rossby waves3 . Strong monopolar vortices may, however,
survive for many turnaround times. Dipoles of permanent form exist only when propagating
perpendicular to the gradient of the Coriolis parameter, i.e. zonally 4,.

We have performed a detailed numerical study of the longtime evolution of monopolar
and dipolar vortices in the 'equivalent barotropic vorticity equation', which can be used to
model the evolution of two-dimensional flows in the mid-latitudes of large rotating planets6.
A similar equation, the Hasegawa-Mima equation7, describes the nonlinear evolution of drift-
waves in a magnetically confined, low-pressure plasma, where the density gradient causes the
anisotropy.

THEORY

We consider the equivalent barotropic vorticity equation describing the Lagrangian invariance
of the potential vorticity, F,

d- r=O , F=q+3y=V 20 -0+/0y , (1)

where didt is the material dcrivative, € is the streamfunction and /3 is proportional to the
gradient of the Coriolis parameter. We adopt local Cartesian coordinates (x, y) with positive
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z eastward and positive y northward. The local fluid velocity 6 is given as i" = i x V0. The
dispersion relation for the linear Rossby waves is w = -k,/3/(1 + k2), i.e. the waves only
propagate westward with phase velocities -/3 < w/k, < 0.

We use a pseudospectral method in double periodic geometry with an explicit 3rd or-
der Adam-Bashforth Predictor-Corrector time integration scheme and zero-padding for de-
aliasing. A hyperviscosity term proportional to Vsr is added to Eq.(l) to ensure numerical
stability. This is implemented implicitly. The simulations have been done on an Amdahl
VP 100 with typically 15 cpu-sec/T for 2562 modes and 100 timesteps per timeunit (T).

MONOPOLE EVOLUTION

When considering monopolar vortices, we only study the evolution of cyclones, e.g. 0 is neg-
ative in the core region. The dynamics of anticyclones can be derived by using the symmetry
relation O(z,y,t) = -O(x, -y,t) of Eq.(1).

The initial condition for the simulation of the monopole dynamics is a Gaussian stream-
function, 4) = -0,. exp(-r2 /2), which gives rise to an annulus of negative potential vorticity
around the positive vorticity core;

qTmnt = 0.(r2 - 1)exp(-r 2 /2) . (2)

Here 0,, is the amplitude of the vortex. A strong monopole on the /3- plane will have closed
isolines of potential vorticity; a criteria for this is that dr/dylx=cont < 0 somewhere along y.
The strength of the monopole, On, is measured in terms of /3.

On the f-plane (i.e. /3 = 0) such vortices do not propagate, but they are known to be
unstable with respect to azimuthal 1 = 2 perturbations8 . As this instability evolves it deforms
the core into an ellipse and causes the negative vorticity in the annulus to coalesce into two
satellites, forming a tripole; intensively studied both numerically and experimentally 2' 9',1° 11.

On the /3-plane an azimuthal I = 1 mode is introduced by the /-effect, setting up a sec-
ondary flow of dipolar nature. This gives rise to a propagation in the north-west direction3'3 14.
This north-west propagation may be understood from the Lagrangian conservation of F inside
the closed vorticity lines. An estimate of the maximum excursion to the north, Yn, may be
derived by employing this conservation13' 14 to obtain y,,r = 2 fo' qnitrdr/rg2, where r, is the
radius of the vortex core.

We have considered several cases, i.e. several amplitudes 0,,,. A localized, nearly linear
perturbation (0). = .25/3) decays due to dispersion with an e-folding time Td - 8//3 in
agreement with linear calculationsI5 .

By increasing the vortex intensity a core consisting of closed isolines of F appears and
the vortex evolution becomes essentially nonlinear. For 4 ,. = 2/3 the radius of the core
for a shielded vortex, Eq.(1), is r, t 1.2 and the maximum meridional drift is y.. 3.
The numerical calculations show a decay of the vortex with near linear rate in agreement
with previous simulations3 . However, the vortex core maintains its identity essentially longer
than Td and drifts north-westward providing meridional displacement until the core finally
disappears. Thus, even a weak monopole provides essential meridional transport of trapped
particles due to nonlinear advection of the potential vorticity.

For 0,, > /P an estimation of the meridional drift for a shielded cyclone gives y,, ýr 46m/2/3.
Thus, a strong vortex is able to provide long-distance meridional transport up to the limit
latitude V.r > 1. The decay rate of the stream function amplitude is essentially smaller than
for the previous case in agreement with previous calculations3 . Comparison of trajectories for
0,m = 10/3 with those calculated by Sutyrin12,13 using an azimuthal I = 1 perturbation theory
shows good agreement during the initial time (Fig.1). At longer times the flow field becomes
strongly asymmetric (Fig. 2). The shape of the central part becomes elliptic and a tripolar
structure appears in the vorticity field. This tripolar vortex rotates around its centre as it
propagates and seems to be stable. Behind the vortex core we see a strongly nonlinear wave
pattern. The formation of the tripolar structure is ascribed to the instability of the azimuthal
I = 2 mode as discussed for the f-plane caselo. The I = 2 is excited by the nonlinear
interaction of the initial I = 1 mode perturbation and the /3-effect. The evolution of the
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strong monopole is similar to the evolution recently observed16 for the case of a topographic
/#-effect and essentially infinite Rossby radius. However, clear formation of a tripolar structure
was not observed16 .

7.5-

5.0 *- -Simulation

y T-heory

25

0 0 - ,' .. . . .. . ., ... .. .. .. ... ..

-40 -30 -20 -10 0

X

Figure 1: Trajectory of strong shielded monopole compared with azimuthal I = 1 mode theory.

Figure 2: Contour plot of potential vorticity, r, at T=400 showing
the tripole. Dashed lines indicate negative values.

DIPOLE EVOLUTION

Equation (1) has the exact stationary solution1 7;

q ="P2 J+•r + 1))-_ aj + r2

q = ((1-r - r(- (+)r) sin0 r < R (3)

q = ( )Uajý _(UJ( 1 _ P2)
q= ((O2+ ) (par) (U(1-p2)/)r) sinG r > R,

where p2 
= (U + /3)/U. p2 > 0 is necessary to ensure that the dipole solution is localized,

i.e. U > 0 or U < -03 implying that the linear waves and the dipole cover complementary
parts of the velocity space. a is the radius of the separatrix and U the horizontal propagation
velocity. K is found as the first solution to the equation

K 2(pa) J 2(Ka)
paKi(pa) caJi(rca)

ensuring continuity of VqS at r = R. As the initial condition for the simulation of the dipole
dynamics we use an f-plane dipole obtained from the above for/3 = 0, and launched in various
directions. All simulations have a = 1.
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First we consider weak dipoles propagating in the linear Rossby wave regime (U = .25,3).
For eastward direction of propagation our calculations show that on the B-plane such a dipole
almost does not propagate. In this case the drift velocity induced in the centre of each vor-
tex by its partner is nearly compensated by the Rossby wave drift. Thus, such a dipolar
configuration can be nearly stationary for quite long time, displaying a particular example
of coherent structure. Ultimately, the slow meridional separation of the partners becomes
so large that they stop interacting and start propagating as isolated monopoles; the cyclonic
part propagates north-westward, the anticyclonic part south-westward. For initial westward
propagation the strong coupling with linear waves and fast decay due to radiation is charac-
teristic. In this case the meridional drift of the individual partners bring them closer together
while propagating westward. For poleward direction of propagation the calculations show a
disintegration of the dipole into two structures decaying with nearly linear rate.

For strong dipoles we choose U = 3. For eastward direction of propagation the strong
dipole decelerates while its partners slightly separate. The dipole adjusts to the steadily
propagating solution of the form given by Eq.(3). For westward direction of propagation the
strong dipole accelerates while its partners become closer. After the short period of adjustment
the westward dipole propagates about twice as fast as the eastward one. In both cases the
steadily propagating dipole, Eq.(3), on the 1-plane is observed to be an attractor for initial f-
plane dipoles. For northward direction of propagation the strong dipole oscillates propagating
predominantly eastward. This calculation shows that even for U = 3 the evolution of the
f-plane dipole corresponds well with the theory of tilted intensive dipoles; described and
developed assuming U > 3 4. Studies of tilted dipoles5 show that only eastward propagating
dipoles are stable to angular perturbations.

CONCLUSIONS

It has been shown that dynamical properties of localized monopolar and dipolar vortices on
the 3-plane differ strongly from their properties on the f-plane without the 3-effect. A strong
monopolar vortex, being stationary on the f-plane, provides effective meridional transport on
the 3-plane due to self-propelling by the azimuthal I = 1 perturbation. Strong dipolar vortices,
being most effective for transport on the f-plane, oscillate and propagate predominantly
zonally without essential meridional transport.

An important new ,eare of the evolution of a strong monopolar vortex on the 1-plane is
the appearance of a tripolar structure due to a weak instability caused by meridional displace-
ment of the vortex centre. Rotation and oscillation of the tripole lead,; to increasing mixing
near the boundary of the vortex core and loss of some trapped particles. This intrinsically
inviscid physical mechanism may play an important role in the evolution of coherent vortices
providing an exchange between the vortex core and the surrounding flow.
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One of the well-known effects of nonlinearity is to support stable propagation of
localized structures in the frequency and velocity domains where propagation of linear
waves is impossible. These localized structures may appear as a result of interplay be-
tween dispersion and nonlinearity. Many models describing microscopic phenomena in
solid state physics are inherently discrete, with the lattice spacing between the atomic
(or molecular) sites being a fundamental physical parameter. Due to specific prop-
erties of discrete systems, one may expect existence of the localized structures which
have no direct analog in continuum models. In the present paper, taking the discrete
Klein-Gordon model as a particular but rather general example. I show analytically
that a new type of localized iures in nonlinear lattices may exist as a result of
nonlinearity-induced symme, king between two equivalent linear eigenmodes of
the chain. These localized si ,s exist independently on the type of nonlinearity
(self- or defocusing) and they are likely fundamental nonlinear excitations of discrete
systems. I point out that the nonlinear structures described here have been already
observed experimantally by Denardo et al.' in a damped and parametrically driven
lattice of coupled pendulums as the so-called "noncutoff kinks".

The physical idea and the properties of the solutions obtained do not depend dras-
tically on the type of a nonlinear chain, but, for definiteness. I consider the discrete
Klein-Gordon model as a particular but rather general example. i.e. a one-dimensional
chain made of particles (atoms) with unit mass, harmonically coupled with their near-
est neighbors, and subjected to a nonlinear symmetric on-site potential. The same
model has been analysed recently to modulational instability 2. Denoting by u1(t) the
displacement of atom n, its equation of motion may be written in the form,

ii + K(2u, - u.+1 _ u,,-i) + w2ut _ 0, (1)

where K is the coupling constant, w0 is the frequency of small-amplitude on-site
vibrations in the substrate potential, and /3 is the anharmonicity parameter of the
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potential. The model given by Eq. (1) may be also considered as a small-amplitude
expansion of the well-known sine-Gordon model, and numerous physical applications
of both these models have been widely discussed in the literature (see, e.g., Ref. 3 and
references therein).

Linear oscillations of the frequency w and wavenumber q are described by the
dispersion law,

= wo + 4K sin2 (qa/2),

a being the lattice spacing. The linear spectrum has a ("natural") gap ,O0, and it is lim-
ited by the cut-off frequency w.2,, = w02 + 4K due to discreteness. The most interesting
point of the discrete model spectrum is the point q = 7r/2a, which corresponds to the
wavelength-four linear mode. In any discrete lattice there are two equivalent modes of
such a type : at q = r/2a all even particles are at rest and the odd ones oscillate with
the opposite phases at the frequency u)2 = w02 + 2K, or, vise versa, all odd particles
are at rest but the even ones oscillate with the opposite phases at the same frequency.
However, in a diatomic linear chain these modes exhibit a ("internal") gap in the linear
spectrumn and this gap is naturally proportional to the mass difference4 . The physical
problem I would like to discuss here is: Can nonlinearity itself induce a gap in the cw
spectrum of a nonlinear chain and what is a physical consequence of this effect ?

To answer this question I will introduce the new variables for the displacements of
the atoms at different sites, i.e. un = vn, for n = 2k, and uti = w., for n = 2k + 1, to
present Eq.(1) for odd and even numbers separately. Then, looking for solutions in the
vicinity of the point q = 7r/2a, I use the following anzatz,

V2k = (-1)k[V(2k, t)e'wt + V*(2k, t)e-iw't], (2)

W2k+l = (-1)k[W(2k + 1,t)e&'t + WV(2k + 1,t)e-zwlt]. (3)

where w2 = W' + 2K is the frequency of the wavelength-four linear mode, assum-
ing that the functions V(2k, t) and W(2k + 1, t) are slowly varying in space and time.
Substituting Eqs.(2),(3) into Eq.(1) and making the so-called "rotating-wave" approxi-
mation, i.e. keeping only the terms proportional to the first harmonic, I finally get the
system of two coupled equations,

• OV aKO 3

iwL-' - aK!- - f3OIV1 2 V - 0, (4)
at Ox 2

.OW OV 3
iO, 2- + aK- -_3IW2W = 0, (5)

where the variable x = 2ak is treated as continuous one.
Looking for the continuous-wave spectrum of this system, I find the result:

(wiW' -OV2)( - _4R,) = a 2 K 2q'2 , (6)

where w' and q' are the frequency and wavenumber of the odd and even solutions
with the amplitudes W0 and V0, respectively. The dispersion relation (6) exhibits a
nonlinearity-induced gap in the cw spectrum and this gap is proportional to the differ-
ence in the amplitudes of odd and even particles oscillations,

Aw -- 0. (7)
84J



Appearence of the gap in the cw spectrum may be a factor of the wave localization at
the frequency w1 provided the nonlinearity will be large enough. However, this kind of
localized structures has to differ drastically from the standard localized excitations of
nonlinear (continuous or discrete) models. Indeed, both of the wavefield components,
the odd and even ones, cannot be vanishing in the same direction because there is no
gap in the linear spectrum and small-amplitude oscillations will be delocalized.

Analysing the localized structures related to the effective gap, I look for stationary
solutions of Eq.(4),(5) in the form

(V, W) x (f1 ,f 2 )&-M , (8)

assuming, for simplicity, the function fl and 12 to be real. As a matter of fact, the
system (4), (5) may display more complicated solutions, e.g., those with a spatially
dependent phase. Then, the stationary solutions of Eqs. (4) and (5) may be found as
those of the system of two ordinary differential equations of the first order,

dz

#f2 df= f - ,(10)dz

where z = x/aK and A = 3/3/2. Equations (9), (10) describe the dynamics of a
Hamiltonian system with one degree of freedom and the conserved energy,

E= -w, Q(fJ +f) + A(f4+ f), (11)

and they may be easily integrated. Different kinds of the solutions are characterized by
different values of the energy E. On the phase plane (f1, f2) soliton solutions correspond
to the separatrix curves connecting a pair of the neighboring saddle points (0, fo),
(0,-fo), (fo,0), or (-f0, 0 ), where f02 = wln/A. Calculating the value of E for these
separatrix solutions, E = -wl2Q 2/4A, it is possible to obtain the soliton solutions in
elementary functions,

2 = 2A cosh(2/\.1,Qz) 4- x/•] f'o = f 2 exp(±V/22 0 z). (12)

The solutions (12), but for negative S), exist also for defocusing nonlinearity when A < 0.
The results (12), together with (2),(3) and (8). give thb shapes of the localized

structures in the discrete nonlinear lattice. Because of all combinations of the signs
are possible in Eq.(12), there are four solutions of this type. Let us fix the sign in
Eq.(12), say minus, to analyse the structures of the odd and even particle oscillations.
When z -- +oc, the amplitude of the even particle oscillations, fl, goes to its limit
value fo w ---•1S/. In the same time the amplitude of the odd particle oscillations
vanishes (see Fig.1). However, when z - -oo, the asymptotic behaviour of the even
and odd components is just reverse: ft --* 0 and f2 -* fo. Therefore, the whole
localized structure represents two kinks in the odd and even oscillating modes which
are composed to have opposite polarities, so that both of them cannot be localized in
one direction (Fig.1). This result is the direct consequence of the nonlinearity-induced
gap (7) in the cw spectrum (6), the gap being disappearing in the linear limit.
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Fig.1 Structure of the localized mode given by Eq. (12).

It is important to note that the described localized structures have been recently
observed experimentally as "noncutoff kinks" in a damped and parametrically driven
experimental lattice of coupled pendulums and numerically in a simplified model'. A
parametric drive allows to compensate the dissipation-induced decay of the structures
supporting steady-state regimes.

It is interesting to compare the localized structures described in this paper with
the so-called gap solitons discovered in 1987 by Chen and Mills'. As is well known, the
gap solitons may exist in nonlinear (continuous) periodic media as localized excitations
when the nonlinear frequency is shifted into the gap of the linear spectrun induced
by periodicity of the system parameters, e.g. by periodical change of the linear refrac-
tive index. From the viewpoint of the theory of gap solitons, the nonlinear localized
structures described here may be called self-supporting gap solitons. Indeed, the linear
spectrum has no gap, but the latter may appear due to nonlinearity. Thus, one group
of the particles (e.g., at the even sites) of the chain creates asymptotically an effectivw
periodic potential for the other group of the particles (e.g., at the odd sites), and vise
versa, forming finally two parts of the structure which is similar in parts to spatially
localized gap solitons.

I would like to thank Prof. A.M. Kosevich for stimulating discussions. The work
was supported by the Alexander von Humboldt-Stiftung through a research fellowship.
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INTRODUCTION

The problem of transmitting a signal through a jr-electron system has been widely

discussed 1,2 Transport of solitons through a polyene chain was subject of a number of
papers with (Klein-Gordon) models 3-5, and the (Su-Schrieffer-Heeger)-model 6-8.
The lattice dynamics is treated in standard adiabatic approximation using Newton's equation
of motion 3 -10. The force required to integrate Newton's equation is obtained as the negative
gradient of a potential energy surface. The equation of motion is integrated numerically
using finite time steps. The result of the integration depends on the accuracy and stability

of the algorithm used 11
We have recently shown 12, that the statics of solitonic excitations can be treated by

a simple step-potential model of a nearly free 7r-electron (NFE) coupled to the lattice
distortion leading essentially to the same results as the (SSH)-model 13, in which an
extended HOckel, tight-binding Hamiltonian is used. The effective potential of the
(NFE)-model takes care of electron correlation effects implicitely and thus has been used
successfully to calculate the linear and nonlinear polarizabilities of 7r-electron systems in

an applied electric field 1 4,15. It has been extended to include electron correlation
explicitely 16. In the step potential model of a hydrocarbon chain of M bonds with unknown
bond lengths dl,d 2 ... dM, the SchrOdinger equation with a potential composed of bond

potentials V , V . VM is solved (V, 1= h 2mia -1, where h2 = 1.944eV,
2 me a

13 = 19.4 and a= 1.4 oA). The wave functions are obtained as outlined in 12. The lowest

states are filled with the w-electrons present in the system and the s-electron density in
the middle of each bond p i( V, 2VV . . VM) is obtained. The electron-phonon coupling
(i.e. the 7r-electron charge in the bond attracts the a-bonded nuclei by Coulomb forces and
thus reduces the carbon-carbon distance, while the Coulomb repulsion of the carbon ions,
diminished by shielding of the a-electrons, counteracts this) is described by
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2

V -a(I-p a) P , a=1.95 (1)2m *a2

Applying (1) and solving the Schrtdinger equation for the new configuration of bond
potentials initiates in return a cycle of an iteration, which converges to selfconsistency

between P, and V, and thus finds the equlibrium charge density f• ( V,. V ..... V ) and

bond lengths a, a2 ..... .The bond lengths of polyenes and annulenes and the statics of
solitonic excitations in polyacetylene are well described by this simple model. It is of
interest to extend the step potential model to a description of soliton dynamics 17,

-- ,I

Figure 1. Zig-zag structure of polyacetylene along s. Coordinate x. of CH group i moving
on track along x. Bond length di = (x,-xi))I cos pi = a/ (2sing )Y of bond i.

THE FORCE FIELD

Treating dynamics of the vibronic coupling in standard adiabatic approximation
Newton's equation M., ii = F, for each site i (Fig. 1) is applied. The force acting on

adjacent sites is obtained from the strain within the bond, which is propotional to the

deviation I- P, of the actual ii-electron density P, from its equilibrium density rr.

F p- [g- Pi)• -•- 1 Pi_.)icos _1]ka2 (2)

For small deviations of the actual density P, from its equilibrium it is assumed that the

equilibrium density 0 is obtained by applying (1) once and solving the SchrOdinger
equation for the new configuration of bond potentials. Newton's equation with force (2) is
approximated by a difference equation (Varlet algorithm) and is further simplified to an
equation describing the time evolution of the bond potentials. Starting with an initial
condition and proceeding with time step At

"V 2V -V. +(At& ) x' I h3
' 2 . (3)

Xti=[(0P/.,- Pil- 2( •-pi)+( ,-,-p-1]

With At w = 0.5 we have chosen a time step At sufficiently small to reach good accuracy
and stablility 1 1. The value of the time scale At is obtained by solving equation (3) to
calculate the frequency vmax of the in-phase-streching-mode of the polyene lattice and by

fitting it with Vmax C" 1400 cm- 1 obtained from the vibronic structure of the
1 -15

absorption band of polyenes. We find Vm, = 179.1At' thus At=1.25- 10 sec,

k= - CHW2= 11.2eV)A2. The velocity of sound is v. 7 avx. 1.85.104
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Figure 2. Initial bond potential V, (above), Vi - V: (below) to dynanics in Fig. 3.
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Figure 3. Dynamics of a neutral kink along a ring of 139 sites with initial kink-15

velocity Vk - 1 OVa. Time evolution during 1000 time steps of At - 1.25 10 sec:

a) Vk and kink width It. b) charge density alternation Api-(-1) (P- 1,Pi), Ap=0

indicated by star. Spot-light every lo1t indicated by numbers 0-100. To avoid kink

phonon collision, phonons evolving behind the kink are relaxed by removing kinetic energy.
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In the following the time evolution of defects in the charge density alternation
i

i (-1) ( P i.1- P ) along the 'i4ttice is investigated.

SOLITON DYNAMICS

The time evolution of a neutral kink embedded in a ring with 139 sites initially at

rest with velocity boosts (Fig. 2) of v k = 1 Ov, is investigated (Fig. 3). Immediately after

the boost the velocity of the kink vk drops down to vk = 5 v, as well as its width I k' from

initially I k = 9 a tol k = 6.5 a (Fig. 3a), while the rise of a huge hump behind the soliton

take, )ver the excess kinetic energy. The hump starts to oscillate and smaller wiggles with

frequency J .9 4 v m" and wave length 1 3 a develop behind the kink, slowing it down

further and increasih.g its width again (Fig. 3b). With progressive time evolution the

amplitude of these wiggles fades away and the soliton reaches a constant width of I _ = 8.3 a

and a constant velocity of v = 3.0 5 v . without energy dissipation into the lattice. For

this long time study the phonons behind the soliton are suspended at some distance from the

soliton to avoid soliton-phonon collision. The total energy is not conserved during this
procedure until steady state is reached. (Conservation of total energy is proved by

deo,-nnstrating constant velocity of a kink moving with low speed). Bishop et al. 7 and

Guinea8 obtain within the SSH-model v values between v = 0.9 v a and v = 4.0 v

by using different values of adjustable parameters.

KINK SCATTERING
0 0o

Figures 4 and 5 show computer simulations of two neutral kinks K and K
embedded in a ring of 160 sites and approaching each other with velocities v K + v. and

v -v, respectively. For the well separated neutral kinks the spectrum has two nearly

degenerate intergap states. These states are occupied with two electrons.
In the case of Ag-scattering (Fig. 4) this degeneracy is removed as the two kinks

collide and annihilate, the lower, doubly occupied intergap state digs into the valence band,
while the upper, empty intergap state digs into the conduction band. The kinks are trapped
in "bounce resonances", an oscillation between the annihilated state of a defect free, but
overshooted bond alternation with empty gap and the bound kink-antikink pair with two
intergap states. The energy dissipates slowly into the lattice. This finding seems to be
independent of the initial kink velocities.

In the case of Bu-scattering (Fig. 5) this degeneracy is removed slightly as the two

kinks approach each other, the lower, singly occupied intergap state iooses a small amount

of energy, while the upper, singly occupied intergap state gains a small amount of energy.
The kinks do not annihilate, but they stop before collision, and turn backwards. The

degeneracy of states and the final kink velocities are restored. This finding seems to be
independent of the initial kink velocities.

Guinea 8 does not distinguish occupation configurations, but reports within the
SSH-model scattering of neutral kinks with different initial velocities: the kinks "are
trapped in bounce resonances" for small initial velocities and above a certain threshold

"bounce twice and separate to infinity with velocities significantly lower than the initial

ones". Similarly Campbell et. al. 3 5 report within the Klein-Gordon models of kinks
"trapped in bounce resonances" for small initial velocities and above a certain threshold of
"n bounce collisions arJd separation to infinity" and of "narrow windows in which kinks are
trapped in bounce resonances".
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Figure 4. A - K R scattering. Two intergap states, lower state doubly occupied, upper

state empty. Initial velocities v K + v and v = - v Time evolution during 750 time

steps of a ) charge density alternation Ap (Ap = 0 indicated by line. Spotlight every 10 At

indicated by numbers 0-75), b )eigenvalues (gap AE= 1.34 4 ) , Ap of central bonds.
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Figure 5. B --K R scattering. Two intergap states, both states singly occupied.

Initial velocities V = +v and v, =-v,. Time evolution during 160 time steps of

a) charge density alternation Ap (Ap= 0 idicated by line. Spotlight every 10 At

indicated by numbers 0-16) b ) eigenvalues (gap aE = 1.34 eV ), velocities v K and v.

71



ACKNOWLEDGEMENTS

The author is grateful to Professor W. F. van Gunsteren for his continuous interes
and encouragements and to Professors I. Kusier and S. Roth for valuable discussions
The use of the computer facilities at the ETH is acknowledged.

REFERENCES

1 F.L. Caner, A. Schulz, D. Duckworth, Soliton switching and its implication for molecular
electronics in "Molecular Electronic Devices II', F.L. Carter ed., M. Dekker, New York
(1987)

2 S. Roth, H. Bleier, Can polyacetylene-solitons be used in molecular electronics? in "Molecular
Electronics-Science and Technology", ed. A.Aviram, Engineering Foundation Conferences,
New York (1989)

3 D.K. Campbell, J.F. Schonfeld, C.A. Windgate, Resonance structure in kink-antikink
interactions in 44 theory, Physica 9D:1 (1983)

4 M. Peyrard, D.K. Campbell, Kink-antikink interactions in a modified Sine-Gordon model,
Physica 9D:33 (1983)

5 D.K. Campbell, M. Peyrard, P. Sodano, Kink-antikink interactions in the double Sine-Gordon
model, Physica 19D:165 (1986)

6 W.P. Su, J.R. Schrieffer, Soliton dynamics in polyacetylene, Proc. Nati. Acad. Sci. USA
77:5626 (1980)

7 A.R. Bishop, D.K. Campbell, P.S. Lomdahl, B. Horovitz, S.R. Phillpot, Breathers and
photoinduced absorption in polyacstylene, Phys. Rev. Lett 52.r.71 (1984)

8 F. Guinea, Dynamics of polyacetylene chains, Phys. Rev. B 30:1884 (1984)
9 C. Tric, Planar vibrations of carbon skeleton of polyenes, J. Chem. Phys. 51:4778 (1969)
1 0 T. Kakitani, Theoretical study of optical e, sorption curves of molecules III, force constant

and bond interaction in conjugated molecules, Prog. Theor. Phys. 51:656 (1974)
1 1 H.J.C. Berendsen, W.F. van Gunsteren, Practical algorithms for dynamic simulations, in

"Molecular-Dynamics Simulation of Statistical-Mechanical Systems', G. Ciccotti,
W.G. Hoover eds., North-HollandAmsterdam (1986)

1 2 C. Kuhn, Solitons, polarons, and excifons in polyacetylene: step-potential model for electron
phonon coupling in it-electron systems, Phys. Rev. B 40:7776 (1989)

1 3 W.P. Su, J.R. Schrieffer, A.J. Heeger, Soliton excitation In polyacetylene, Phys. Rev. B.
22:2099 (1980)

1 4 C. Kuhn, Step potential model for non-linear optical properties of polyenes, push-pull
polyenes and cyanines and the motion of solitons in long-chain cyanines, Synth. Met
43:3681 (1991)

1 5 C. Kuhn, Step potential model for nonlinear optical properties of polyenes, in "Electronic
Properties of Polymers', Eds. H. Kuzmany, M. Mehring, S. Roth, Springer, Berlin (1992)

16 C. Kuhn, 2'A. below 11Bu in polyenes: correlation of nearly free ir-electrons, Synth. Met.

in press
1 7 C. Kuhn, Dynamics of solitons in polyacetylene in the step-potential model, Synth. Met.

in press

72



-7

SOLITON-LIKE STRUCTURE IN (2+1) DIMENSIONS

Bernard Piette and Wojciech J. Zakrzewski

Department of Mathematical Sciences
University of Durham
Durham DH1 3LE, England

Abstract: We study lump-like solutions of the S2 sigma model and of the cor-
responding Skyrme models in (2+1) dimensions. We show that the pure S2 model
possesses conserved quantities that makes it quasi-integrable in the geodesic approx-
imation. We also show that. for some choices of the potential the Skyrme models
have stable lump-like solutions that in the head-on collisions scatter at 900 to the di-
rection of their approach while for some other ones form bound states of such lumps.

INTRODUCTION

Over the past few years classical field theories in (2+1) dimensions have become
an increasingly important area of research. These models can be considered as low
dimensional toy models describing various properties of lump-like structures which in
(3+1) dimensions are thought to provide a good description of many physical objects
such as nucleons or monopoles.

One of these models is the (2+') dimensional Skyrme S2 model which possess
stable lump-like solutions that can be characterised by a topological quantity[']. This
model is described by a three component vector field ý lying on a sphere of radius 1,
ie ý satisfies . ý = 1. The Lagrangian of the model is given by

IC = (0) -.( (0) - 0.((o0$.g8o) 2 - (8ovgV)(o(.o,,))- O2v(2 1 ,0, 3 ), (1)

where u is the Lorentz index running from 0 to 2 for, respectively, t, z and y. The first
term in (1) is the Lagrangian for the pure S2 sigma model, the second one describes
the additional Skyrme term and V is an arbitrary positive potential that goes to 0 as
Sgoes to the north pole of the sphere ie to • = (0,0, 1).

THE S2 SIGMA MODEL

When we set 01 = 02 = 0, (1) becomes the Lagrangian for the S2 sigma model
which is invariant under spatial (x and y) conformal transformations. The model
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possesses several cunserved quantities. The finite energy static configurations of the
model correspond to the mappings of the 2 dimensional sphere into itself and so
these field configurations are characterised by an integer-valued topological charge
describing such mappings. As the time evolution corresponds to a continuous trans-
formation, the topological charge remains constant and so is conserved. The Lorentz
invariance of the model generates four conserved quantities: the energy-momentum
three-vector and the angular momentum. Moreover, as the model is invariant under
the 0(3) group acting on S2 , the three Noether charges

Ci = (iikIddy(jOjk- 00910), i = 1,2,3 (2)

are also conserved.
All static solutions of this model can be presented in an explicit formi2]. They

correspond to a number of lunp-like configurations where the number of lumps is
determined by the value of the topological charge. The existence of the multi-lump
solutions is due to the fact that the lumps do not interact with each other. Moreover,
as a consequence of the conformal symmetry, the lumps can have any size and be
placed at an arbitrary distance from each other.

To see how the lumps evolve in time we have to perform numerical simulations.
Unfortunately, the conformal symmetry of the S2 model makes the lumps unstable,
as they can shrink or spread out without any change in their potential energy, and
indeed, this is what is seen in numerical simulations['].

In particular, when a single lump at rest is slightly perturbed it shrinks or spreads
out very rapidly becoming infinitely broad or infinitely spiky. When two lumps are
sent towards each other at a zero impact parameter, they collide, form a ring and then
scatter at 90*. After the collision, the two lumps that emerge from the ring shrink or
spread out as they move away from each other, thus exhibiting their instability.

Another technique, which has been widely used to study many models, is the
geodesic approximation. If the lumps are given a very small amount of kinetic en-
ergy, one can assume that they will stay in a configuration very close to a static
configuration. The idea of the approximation is to take the most general expression
for a static configuration of a given number of lumps (say two) and assume that,
for low velocities, the parameters of the static configuration become time dependent.
This is not correct for the fuill field evolution, but can be correct "on average", ie
after the integration over x and y. Thus substituting this ansatz into the Lagrangian,
integrating over the spatial coordinates x and y, the field theoretical system reduces
to a dynamical system with a finite number of degrees of freedom (five in this case).
In fact, the resultant system of the ordinary differential equations has also to be
solved numerically, but the calculations are much simpler to perform. The results
obtained in this approximation are in a very close agreement with those obtained by
integrating numerically the full equations of motion.

The conserved quantities described above, in particular C', do not translate triv-
ially into the conserved quantities of the differential equations governing the geodesic
approximation, but are nevertheless also nearly conserved. This we think may be a
clue which may help us to formulate more precisely the concept of quasi-integrability
of the model.

THE SKYRME MODEL

To cure the instability problem we have added a Skyrine and a potential term
to the S2 Lagrangian. The first term makes the lumps shrink and the second one
forces them to spread out. Combined together the two terms stabilise the lumps.
The Skyrme and the potential terms break, respectively. the spatial dilation and the
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0(3) symmetry of the S2 model. For many specific choices of the potential term the
model still possesses as its solution one extended structure solution of the pure S2

model but with its overall size fixed by 01 and 0.,. Other solutions also exist but some
of them are unstable due to the forces which now act between the lumps.

Chosing V = (1 + 03)4, the basic solution corresponds to a single lump and its
topological charge is one[3]. The lump is stable under perturbations but its scattering
properties are more complicated. Two lumps, initially placed some distance from
each other, repel and so move away from each other. When two lumps are sent
towards each other at a zero impact parameter, they progressively slow down, and if
their speed is large enough, they collide, form a ring and scatter at 900. After the
scattering the two lumps emerge with their initial sizes. If the speed is too small,
the two lumps slow down. stop and then move back to back. The critical speed
that differentiates between the back to back and the 900 scattering increases with 01
and 02. We have also observed that the scattering time is longer when the speed is
close to this critical velocity. When the speed is very close to its critical value the
total energy density has the form of a nearly perfect ring, whereas the kinetic energy
density exhibits an oscillatory motion. This motion generates a ring structure from
which two peaks emerge at 900, come back to form a new ring, scatter along the
original direction and emerge again at 90o etc for a few oscillations after which the
two lumps eventually scatter either back to back or at 900. This behaviour is very
similar to the formation of a resonance seen in some dynamical systems.

For the scattering with non zero impact parameters, the results were very similar.
Each time the two lumps scattered at an angle dependent on tile incoming speed.
At small speeds the lumps scattered at a small angle, whereas at large speeds, the
scattering angle was larger than 900, the larger the impact parameter the larger the
angle.

Another interesting feature of the Skyrmne models is that most of the scatterings
of lumps have been almost perfectly elastic. By this, we mean that although during
the scattering, a circular wave is emitted which carries away some energy, the energy
of this wave is quite small. Even though it is very small, it is nonzero and so the
kinetic energy (speed) of the two lumps after the interaction is always smaller than
before it.

A similar behaviour is exhibited by a single lump. As we have said, the size of a
lump is fixed in this model. but if a. lump with an incorrect size is taken as an initial
configuration its size changes to the correct value, and the excess of energy is got
rid of by emitting a circular wave. This proves the stability of a single lump in this
model.

The fact that the scattering of the lumps in this model is not purely elastic is an
indication that the model is not completely integrable. Nevertheless, the behaviour
of the lumps looks perfectly regular and resembles the behaviour seen in integrable
models. In particular, all the extra radiation effects, though nonzero, are very small.
This leads us to believe that between the integrable and strictly nonintegrable models
there is an intermediate cla-., of models which we will call quasi-integrable and that
these models are quite similar to the integrable models, without having all their

properties. We also believe that they may be quite relevant when we try to describe
real phenomena in physics as. for example, small inelasticity is often observed in
nature.

We have also studied the Skyrme with the following type of the potential[4]:

Po(o + Aa-a( + 23)) + )(l + 03)21, (3)

where A and a are two arbitrary parameters. The static solutions for this model can
be constructed analytically. They have a topological charge equal to two, and so
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correspond to two lumps at rest. The parameter a in the potential is equal to half the
distance between the two lumps. If a is 0, the two lumps are on top of each other, but
as its value increases, the lumps are located further apart. The shape of the potential
between the two lumps resembles the Morse potential but with a finite value at the
origin.

This static solution thus corresponds to a bound state of two lumps. Moreover, it
is also stable under small perturbations. If the lumps are given a small momentum,
they oscillate around their equilibrium position, radiating this excess of energy until
they stabilise at their position of equilibrium. If they are sent away from each other
with enough energy, the two lumps split and escape to infinity. When sent towards
each other with enough energy to overcome the potential barrier that separates them,
the two lumps collide, form a ring and then emerge at 900.

We have not been able to find the analytical form of the one lump solution of
this model, but we have been able to determine it numerically in our simulations. Its
energy is larger than half the energy of the pair, explaining why the pair is bound.

We have also been able to construct numerically static solutions for three, four
and five lumps put together (for the same potential). In each case the lumps are
situated on a circle with a radius which increases with the number of lumps. The
energy per lump also increases with the number of the lumps, the most bound being
the pair.

As the bound states of humps are the most stable objects in this model, it is
interesting to see how they behave when scattered against each other. In this case,
the scattering depends crucially on the impact parameter, on the r Jiative speed and
also on the relative orientation of both pairs making it much more difficult to describe.
Our observations can be summarised as follows. When the scattering takes place with
a small kinetic energy, the two pairs hit each other and emerge in an exited state (the
lumps oscillate around their equilibrium position). Higher energy scatterings depend
on the relative orientation of the pairs. The pairs sometimes scatter back to back,
sometimes at 900, but we have also observed that for some very specific values and
orientations, the pairs split and produce four isolated lumps that can move away from
each other.

We conclude that the Skyrme model with the potential given by (3) is a good toy
model to study various properties of bound states of lump-like field configurations
and that these scattering properties are very complicated. Moreover, we hope it is
telling us also what to expect in physically more relevant (3+1) dimensions.
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SOLITONS ON A NONLINEAR KLEIN-GORDON EQUATION
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INTRODUCTION

The nonlinear Klein-Gordon equation under investigation is

-0;=+(A0),,) +=+0=0 ()

where 4 = 4 (xt) is a real-valued function and f(4) is a positive function of 4 for
141 <-o with f(O) = 1. Eq. (1) is a conservative system since it can be derived from
the Lagrangian density

_102 _ - f (aCd. - _!4D2. (2)
xv 2 2''' 2  2

We consider two specific cases for f(4): (i) Linear: f (4) = 1 + hi, I hf I < 1, (ii)
uadratic: f(4) = 1 + k42 , Ik421 < 1. These two choices of f(4) take Eq.(l)

respectively into

-0.= + O0t + 0 = _(02)4 (3)

-_D + On + 0= -(0), , (4)

where 4 is the normalised dependent variable 4. In each of the above equations the
l.h.s. is the linear Klein-Gordon equation and the r.h.s. represents the nonlinear term.
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SOLITARY WAVE SOLUTION

Since existence of solitary wave solution is a necessaU (though by no means
suffiienm) condition for the existence of soliton solution for a nonlinear evolution
equation, the solitary wave solution is investigated by introducing as in Scott et a1l
the transformation f = x - ut where u > 0, so that ax/a = - d/(uat) = d/df.
The condition that a solitary wave is localised in space and time so that dt/dC and
d2#/d 2 must vanish as I f I -" implies that solitary wave solutions can exist only for
0 < u < 1. Eqs. (3) and (4) go over respectively into the normalised linear ODEs
(5) and (6) as shown in Table 1.

Table 1. Normalization of Eqs.(3) and (4) into nonlinear ODEs.

_• I Normalised NODE

Eq.(3) A6 "o (5 )'
Eq.(4) d--• 2 -3) 0 (6)

Eqs. (5) and (6) have the respective solitary wave solutions

( = -sech - '(C) + E! i -.,.,.V,) - o(I.:.- )(7)

=6s Vf2 sech (2 1-40(E) + IEIsgn(i2:1-2:) 2- 2O(IEI-E2)J (8)

where

r; s - 2tanh-l1 and E2 = - tanrh-l1

are the points at which dt/d--- has an algebraic singularity and 8 (-) is the unit step
function. Eqs. (7) and (8) are sketched in Fig. 1. Both Eqs. (7) and (8) exhibit the
salient feature of velocity dependent amplitude which is characteristic of the soliton.

Eq.(8) -L 4 (-) V --- Eq.(7) _2 v (H) E

* . ..1_ _ _ ___/_ __ __ _ __-_ _

I-.. . 2/-3

1 "/ 2 I

-2 "1 U0: "

Figure 1. Solitary wave Profiles.
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In the research now in progress, confirmation of whether these solitary wave
solutions are indeed solitons is being attempted via analytic and computational
techniques.

ANALYTICAL- INVERSE SCATTERING METHOD

The general inverse scattering framework of Ablowitz et a12 is sought to be
applied by showing that Eqs. (3) and (4) can be derived from the Schr&dinger
potentials of the two-component linear system Lv = r v and idv/dt = Bv where
operators L and B are as in Eqs. (V.6) and (V.7) of Scott et al1. Using the procedure
outlined in Lamb one can obtain the nonlinear evolution equations for the
Schr6dinger potentials q and r:

iq, + (!q - q2 (t) - iq 1a,(t) = 0 (9a)

ir, + (r2q - 'rj.a(t) - irp,(t) = 0 (9b)

Eqs. (3) and (4) can be derived from Eqs. (9a) and (9b) for various choices of q and
r as shown in Table 2.

We envisage identification of the reflection coefficients RR(k) and RL(k) with their
Fourier transforms and impose the restriction in order that the time dependence of
the reflection coefficients be of simple exponential form. The knowledge of the
reflection coefficients and their time dependence can then be used to determine the
functions AR(xct) and AL(xct) of Lamb3 which describe the scattering for incidence
from the right and the left respectively, by solving the Marchenko equations both
when bound states are absent and when they are present. Determination of f then
follows from

O(xJt) = -2!A(x,x;t) = + 2.kAL(xxt)

COMPUTATIONAL: DISCRETIZATION OF THE INITIAL VALUE PROBLEM
FOR EQ. (1)

The head-on collision of two solitary waves is sought to be simulated on a
computer to determine whether they retain their shapes and velocities after collision.
To begin with, Eq.(1) is rewritten as a matrix equation of the quasilinear hyperbolic
type

Ut+ A(U) U, + D(U) =. (10)
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where

r01 0 106 0
U(x~t) 01 ,A(U) 1 0 0 ,D(U) '

F 2 Alt)
F0 0 0-

(f, and 42 are two new independent variables introduced to convert Eq. (1) into a
system of three first-order PDEs.) Matrix A(U) has eigenvalues Xi(U) and associated
(left) eigenvectors %i(U), (i = 1,2,3), given by

0
T] [ 'i] j0 0 11

121  V90 q2 IN = -X 0
3.

Next Eq. (10) is cast into its characteristic normal form

ii (U) Ui + ni (U) D (U) = 0 (i = 12,3) (11)

where U,1 = (8/at + Ii (U) a/ax) U. In Fig. 2 suppose we know the value of vector
U at the points P(x - A xt), Q(xt) and R(x + A xt), and want to advance the
solution by At in time to Q' (x, t + A t). Let Q'Si be the characteristics of
Q'associated with eigenvalues Xi(Q'), i = 1,2,3. With this construction the finite-
difference approximation to Eq.(11) is

qU(Q" )U(Q" )-U(SM) +TI(U(Q' ))D(U(Q' ))=0 (i=1,2,3). (12)

t ~Q'(X,t+,&t)

P R
(x-Ax,t) S1 S2 Q S3 (x+hx,t)

(x,t)

Figure 2. Scheme for discretizing Ui.

81



Since points Si do not in general coincide with netpoints P, Q and R only at which
U is known, U(S) is approximated by linear interpolation between values of U at
adjacent netpoints. Plugging in the values of D(U), Xi(U) and ii(U) one can write for
the unknown vector U(Q') the matrix equation

At At 0

I ~(Q)] 2AX~rA-O(Q)) 2Ax r(P)II(Q')A= At At 0 I(P)I+
0 0 0

1- At 0 0
AxVA() [.1(Q)1

0 1- At -At I '(Q)I +

AX/A R() A'O(Q)) L02 (Q)J
0 At 1

At At o
2 Ax VA (Q)) 2Ax •I(R)]

+ -At At 0 4(R)I (13)

2A$4(Q)) 2Ax/J¶(Q)) 
L2(R)J

0 0 0

Eq. (13) is the Courant-Isaacson-Rees algorithm for discretizing the initial value
problem for Eq. (1).

For computer simulation, the upper half of the (xt) -plane is divided into a
grid of uniform with Ax a long the x-axis and At along the t-axis and grid numbered
as shown in Fig. 3. (In Fig. 3 only the right quadrant is shown; the left quadrant is
the mirror image of the right quadrant.) The grid points (±K,L) has the co-ordinates
(±KA2, LAt) where K and L are integers. We write two sets of Eq. (13), one set for
pulse propagating from x = - -o to + ., and the other for pulse propagating from x
= + - to - w. In either case the solitary wave of Eq. (7) or (8) as appropriate is
assigned as initial values. A computer can be programmed to solve Eq. (13) for
U(KL+ 1) and U(-K,L+ 1). The progress of the pulses and the aftermath of their
collision can thus be studied.
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Figure 3. Grid for Computer Simulation.
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INTRODUCTION

This article is motivated by two very important considerations in nonlinear
science: (i) that the combination of nonlinearity with disorder and/or noise is an
essential direction for research; and (ii) that nonlinear mode reductions to low-
dimensional systems via the use of "collective coordinate" descriptions of coherent
space-time structures is one of the very few robust teclmiques for general nonlinear
equations supporting such "soliton-like" or "particle-like" solutions.

First, consider the combination of nonlinearity and disorder. Recent years have
seen an enormous progress in understanding the effects of disorder in linear systems
like Anderson localization and the transition from insulating to conducting behavior
in d = 3 dimensions at zero temperature upon decreasing the disorder. Completely
ordered, integrable nonlinear systems in d = 1 are also fairly well understood by
now. The understanding of the interplay between disorder and nonlinearity, on the
other hand, is still in its infancy.' Both, nonlinearity and disorder, may give rise to
self-localized excitations (solitons or Anderson localized wave packets, respectively).
Therefore it is natural to ask how these effects might reinforce, complement, or
frustrate each other. Transport properties in disordered, nonlinear materials for
example strongly depend on whether solitons behave as "particles" in the presence
of disorder or interact very strongly with other degrees of freedom. Does the
nonlinearity lead to adaptive behavior of excitations in disordered materials which
preserves coherence? How do nonlinear excitations interact with each other in the
presence of disorder? Does initially distributed energy self-focus as in niodulationidly
unstable nonlinear equations? These and other issues are of great experimental
concern in fields from nonlinear optics, to polaron formation in solid state materials,
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to vibron localization in natural and synthetic biomolecules, etc., all of which are
central to the concerns of this Conference.

Turning now to the use of collective coordinate reduction techniques, it is clear
that these are only valuable for the above problems to the extent that "particle"
solutions of the underlying nonlinear equations remain valid-other degrees of
freedom may be excited or the "particles" may be destroyed by certain perturbations.
However, we have found2 in the model problem described here that quite primitive
collective coordinates can indeed provide a quantitative description of much of the
phase space of competing nonlinearity and disorder driving forces. We should
emphasize, however, that this report should be viewed only as a component of a much
larger study of disorder combined with nonlinearity, particularly the questions of
(a) transport and (b) energy focusing in disordered, nonlinear systems. In addition,
we also mention that we are successfully extending collective coordinate approaches
to higher dimensional systems, in particular to vortex and domain wall excitations
in (2 + 1)-dimensional magnet and Josephson junction array contexts. 3

In view of space limitations, we specifically restrict ourselves here to the
(1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation in a periodic (parametric)
perturbing potential, and we focus on a central phenomenon of "length-scale"
competition.2 The competition here refers to that between the period of the
perturbing potential and two characteristic lengthscales related to the soliton
(breather) solution of the unperturbed NLS equation-the two lengthscales are
related to the width (or amplitude) and internal phase of the soliton. Collective
coordinate, effective particle descriptions are found to be very efficient if there
is not direct competition of those lengthscales with the perturbation's period.
However, if this competition occurs, solitons are easily destroyed and then energy
refocussing may occur elsewhere in the system-for this reason, the single color
periodic perturbation is quite fundamental to the problem of soliton formation and
propagation in a perturbing of field of general color (randomness).

Our strategy here is to compare our collective coordinate results with explicit
numerical solutions of the full perturbed NLS equations. All numerical results
were obtained upon numerically integrating the integrable spatial discretization of
the NLS equation, given by Ablowitz and Ladik4 (see also [5]), in the continuum
limit using a Runge Kutta-Verner fifth and sixth order method. To damp away
unwanted excitations and radiation, the spatial domain was divided into a central
half supporting the soliton (being at rest or moving) and two quarters at the
boundary where the system was damped with a damping constant increasing
smoothly from zero towards the boundaries. Although not described here, we
have also used the same collective coordinate approach to the perturbed (1 + 1)-
dimensional NLS and sine-Gordon equations under a variety of other parametric
perturbations: local impurities;6 a uniform ramp;5 quasi-periodic;2 random;6 as
well as an external periodic "kicking,"'6 interesting for the quantized systems. We
have also successfully employed collective coordinate reductions to describe chaotic
interactions of two solitons in a periodic potential.7 For the sine-Gordon case, the
additional phenomenon of breather break-up to kink-antikink pairs in a periodic
potential has been observed and understood.', 9

THE PERTURBED NLS EQUATION

The (1 + 1)-dimensional NLS equation and the behavior of its solutions
under a variety of perturbations is well investigated."0 This body of work can be
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characterized by the kind of perturbation added to the NLS equation: (i) driving,
periodic in space and time, with inclusion of damping; (ii) isolated impurities;
(iii) spatially periodic stationary potentials; (iv) spatially random stationary
potentials. The initial conditions chosen depend on the application in question.
One can either look for modulational instability starting from a homogeneous initial
state, investigate transmission properties using a plane wave solutions entering the
nonlinear disordered region from a linear region without disorder, or start with

soliton solutions of the unperturbed NLS equation and monitor their behavior under
the perturbation.

We are interested in the behavior of coherent excitations under stationary,
spatially periodic perturbations. This is the simplest model of disorder in nonlinear
materials having a wide range of applications. Away from the perturbative regime
knowledge about exact solutions is very limited. Therefore the usual strategy is to
start with exact solutions of the unperturbed NLS equation and observe numerically
whether and how they adjust to the perturbation. After different scenarios are
identified, perturbation expansions starting from nontrivial perturbed solutions
might give insight into the mechanisms underlying the different scenarios.

Here we investigate a perturbed NLS equation of the following form:

itpt + V,.. + 20 1012 = EV, cos(kx) .(1

The perturbation introduces a lengthscale > = 27r/k which breaks the lengthscale
invariance of the unperturbed (e = 0) NLS equation. Rescaling spatial and temporal
coordinates and the amplitude of thc field allows us to choose the wavelength of the
potential as the unit of length. Therefore only lengthscale ratios involving the period
of the potential will be relevant variables.

For vanishing perturbation (c = 0) the traveling nonlinear wave solutions of
Eq. (1) are proportional to the elliptic functions cnu or dnu with u = a(x - vt - xo).
In addition to these extended wavelike solutions, localized solutions are possible:

t=4x /2-i4(

k(xt) = 2 icosh (277(x - q)) '(2)

with the soliton position q(t) = -4Ct + q0 and its phase 4t(t) = 4(C2 - q
2 )t + po,

where C = it is the complex pole of the analytically continued reflection coefficient
corresponding to a single soliton (see for example [11]).

THE "EFFECTIVE PARTICLE" LIMIT

If the width of the soliton is much smaller than the period of the perturbing
potential (q > k) then the soliton is only influenced by local properties of the
potential, e.g., its gradient, its curvature, and so on. If we take into account only
the gradient of the perturbing potential V(x), then the resulting NLS equation is
still completely integrable:12

i¢t + ¢,x + 2¢0l1I = e 0(v0 + VIX). (3)

In particular (3) allows for soliton solutions o;' -he form given in Eq. (2) with the
position q and the phase 4D fulfilling the following equations of motion:
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142 1(4).i=- -4 /+*0.

4

If the potential is nonlinear, then we make a Taylor expansion around the
instantaneous position of the soliton. We keep only terms linear in (x - q), as
higher order terms will be proportional to higher powers of the lengthscale ratio
k/n, which we -ssumed to be a small quantity in this section. This leads to:

S=-2eV'(q) ,
*=1.24(5

1- 'q --4 2 + e (V(q) -qV'(q)) (5)

Obviously the position of the soliton does not depend on its phase. Therefore we
will drop the phase ((t).

For a general perturbing potential, the NLS equation will no longer be
completely integrable. Nevertheless, the dynamics still possesses two integrals of
motion, namely the energy E and the "norm" N:

N oj d,(6)

E = (I02I2 - I4V1 + lIlY2V(x))

We can refine our previous considerations, which led to an equation of motion for
the soliton position q, by using the collective coordinate ansatz (2) for the solution
and demanding the constancy of energy and norm:

| N = 41? ,

E = 7 (42 _ '1/2) + Veff(q)' (7)

where the effective potential is given by

Veff(q) = 4772E sech 2 (2yi(x - q)) V(x). (8)

This leads directly to the following conditions

1 =- v(q).(9)

In particular we find for V(x) = cos(kx):

Veff( sinh(kr/4) cos(kq). (10)

From this we derive the equation of motion for the soliton position:

ek27r
q = 2n sinh(k7r/4n) sin(kq). (11)
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Comparing expression (11) with the equation of motion for q derived earlier (see

Eq. (5)), we observe the influence of the lengthscale ratio k/rj. If the soliton is very
narrow compared to the wavelength of the potential (k/ri < 1), then we recover
the previous result. Numerical evidence shows that Eq. (11) is still useful even for

k/ri ; 1/2, when the approximation (5) is no longer sufficient. Figure 1 gives an
example for a soliton moving in a long-wavelength cosine potential and compares
its motion with the prediction of the effective particle dynamics. Note the excellent
agreement.

4.0 - (a (b)

3.0-

0.0-

-10

-.00.0 .0 -128.0 0.0 1280
x q(tO

Fig. 1. The particle limit. Parameters: c = 0.01, A = 256. Initial values: q = 0, 7 = 0.05.

Integration time: T = 3000. (a) The behavior of the full NLS equation (1) (dashed line: perturbing

cosine potential). (b) The position of the NLS soliton (full line) compared with the position of the

effective particle dynamics (10) (crosses).

The opposite limit (k/r7»> 1) is also notable. Although the soliton ansatz (2)
is no longer justified, the effective potential Vef(q) given in (10) is exponentially
small in the lengthscale ratio. Indeed, as we will see in the next section, when the
coherent excitation covers many periods of the perturbing potential, the influence of
the potential on the center of mass motion of the excitation is exponentially small
in the lengthscale ratio.

So far we have neglected changes of the soliton shape and radiative effects
completely. Two cases are accessible to analytical treatment: when the soliton emits
radiation without interacting with it or when the soliton traps the radiation in the
form of a shape modulation of sufficiently simple form. We address the second case
in the next two sections.

THE "RENORMALIZED PARTICLE" LIMIT

Now we turn to the opposite limit (rY < k) where the width of the soliton
is much larger than the period or the characteristic lengthscale of the perturbing
potential. Taking the soliton given in Eq. (2) as initial condition, we observe that
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the effective potential it experiences initially in the presence of a perturbation cos(kx)
is given by Eq. (10). This effective potential is exponentially small for k/n > 1. The
initial energy of the soliton depends only very weakly on the perturbing potential
because the soliton "smoothes over" the short wavelength perturbation. Nevertheless
the potential will affect the coherent excitation locally and change its shape in
the course of time. Numerically evidence shows that the soliton is influenced by
the perturbation on two different time scales. An initial adjustment occurs nearly
instantaneously leading to a burst of radiation emitted by the soliton. An immediate
effect of this is that the soliton shape shows a modulation with the wavelength of
the perturbation. Then, on a much longer timescale, the soliton continues to radiate
but with much smaller power compared to the initial burst.

As the two lengthscales involved are very different, the dynamical equations can
be solved approximately using a separation of lengthscales. We separate the "dressed
soliton" solution of Eq. (1) into two parts:

O(x, t) = %P(x, t)(1 + X(kx)) . (12)

The first ("slow") part, %P turns out to be the unperturbed soliton (2) fulfilling the
homogeneous NLS equation (e = 0). The second ("fast") part gives the effect of the
perturbation e cos(kx) on the short lengthscale.

If we put the ansatz (12) into Eq. (1) and average over the fast variables we find
for the slow part of the dynamics, up to O(c),

i'I,, + 'x + 2'1''1'12 = 0, (13)

which is the unperturbed NLS equation with the soliton solution given in Eq. (2).
The fast part of the dynamics fulfills, up to 0(e),

xx P + 2x. IF + 2 (X + ý)T I'%pI2 = T cos(kx), (14)

where ý denotes the complex conjugate of X. In this equation we treat %I(x, t) as
an adiabatic perturbation in the spatial variable leading to X of the form (upon
neglecting terms of O(k- 4 )):

cos(kx) i4 sin(kx)
X -2+ k(k 2 - " (15)

This gives (up to O(e)):

10(x,t)12 = 4n 2sech 2 (2 7 (x - q)) 1 - 2eco(kx) . (16)

The result (16) shows that for slow solitons (141 < k) the spatial modulations
of IVI are out of phase by 7r with the perturbing cosine potential: local maxima of
the shape modulations of the soliton fall into minima of the potential. This is what
one would expect for the case of a soliton at rest. Equation (16) predicts that a
similar result holds for sufficiently slow solitons as well. Figure 2 gives examples
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Fig. 2. The renormalized particle limit. Parameters: 4E= -0A1, X = 8. initial values:
r---0.05. Integration time: T = 200. (a) Soliton at rest: 4 0. (b) Slowly moving soliton:

(•=-0.2.

for soliton-like excitations at rest or slowly moving in a cosine-potential, which are
in agreement with our theoretical prediction. Note that 141 < k is fulfilled in both
cases.

Later, we will also address the large velocity case and the transition region
between small and large velocity, giving rise to an additional lengthscale competition
which destablizes coherent excitations.

The shape modulation of the dressed solitons can be analyzed in terms of
radiation with wavelength A = 2ir/k being trapped on the soliton. To understand
why this excitation is trapped, assume it would be able to propagate away from it.
If the amplitude of the radiation is small, then we can neglect the nonlinear term
in the perturbed NLS equation. The radiation has a wavelength coinciding with the
wavelength of the potential. In this case only standing wave solutions exist for the
linear Schr'dinger equation and free propagation is not possible. Excitations of this
wavelength, which occur naturally as shape ,nodes of solitons in spatially periodic
potentials, are therefore trapped on the solitons and are forced to move with them.

THE PHASE-LENGTHSCALE COMPETITION

Above, where we discussed the renormalized particle limit, we restricted the
velocity of the soliton to sufficiently small values. Now we make more precise what
"sufficiently small" means. Equation (15), giving the shape modulation of the soliton
in the presence of a short wavelength perturbation, is valid not only for 11 << k but
as long as 142 - k21 >> 77. Now we turn to the case 141 > k and find from Eq. (16)
that the spatial modulation of I11 is in phase with the perturbing potential.
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Fig. 3. The phase resonance 14ql • k. Parameters: c = 0.1, A =8 (or k; • 0.785), q = 0.05.

(a) = -0.2, T =500. (b) q=-0.8 (or 141[ :"/k), T = 125. (c) q -1.2, T = 100. (d) 4 = -1.6

(or 1I1t;t 2k), T = 80.
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Equations (15,16) already indicated where the crossover to the large velocity
behavior occurs, namely at 141 = k. Here the sign of the shape modulation changes.
In addition at this point the perturbative result suffers from a singularity which
wavelength of the perturbation and the wavelength of the phase modulation leads
to a resonance which breaks up coherent excitations even for very small amplitude
of t•ie perturbation. This is illustrated in Fig. 3 together with the small and large
velocity dressed soliton cases. Exactly at the resonance (141 = k) the soliton breaks
up into a standing wavetrain with A = k which switches back and forth between
being in phase and out of phase with the potential.

Staying well away from this resonance, either above (141 > k) or below (141 < k),
guarantees stable propagation of coherent excitation. These dressed solitons are quite
robust and behave like bare soli.ons in many respects, for example upon collision.2

We collect our results in Fig. 4 for fixed k and variable soliton velocity v = 4
showing the norm N of the excitation after 10,000 timesteps and the exponential
decay rate tc of the norm (after damping away radiation and other excitations
traveling with velocities different from the soliton velocity), both giving information
about the stability of the excitation. As can be seen from Fig. 4, the solitons are
most unstable for 141 - k and 141 P 2k; but only in the former case is a resonance
observed as described in Eq. (15). The difference between these two cases is also
illustrated in Fig. 3. For 141 m 2k the soliton decays by spreading very slowly without
apparent resonant behavior.

1.00

0.75

Fig. 4. Phase resonance and soliton sta-

z bility. Parameters: c = -0.1, A = 8, Tj = 0.05
*-. 0.50- (dashed line and squares); c = -0.025, A = 16,

Z v7 = 0.025 (full line and triangles). Integration

025- time T = 10000. Norm ratio N(T)/IN(O).

000
0.0 0.5 1.0 1.5 2.0 2.5

v/k

THE AMPLITUDE-LENGTHSCALE COMPETITION

If the width of the coherent excitation is comparable to the period of the
perturbing potential (q • k), then neither the particle picture nor the renormalized
particle picture can describe the outcome appropriately. That both approximation
schemes fail has a deeper reason. The competition of length scales leads to
complicated behavior in space and time which involves many degrees of freedom.
There no longer exists a small number of collective degrees of freedom which can
adequately describe the essential features of the dynamics. As all approximation
techniques fail badly, we have to resort to numerical techniques to determine the
parameter range in which lengthscale competition leads to breakup of coherent
excitations.

In Fig. 5 we illustrate the lengthscale competition in question for a soliton with
initial velocity 141 well below the resonance at k for potentials with widely different
k-values but fixed amplitudes. Upon varying the wavelength of the potential from
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A < 1/it through A :, 1/t; to A > 1/ij, we observe smoothing over the potential.
break-up of the soliton and trapping in the potential, and particle-like motion in
the long-wavelength potential, respectively. For the long-wavelength case see Fig. 1
where the potential has the same amplitude as in Fig. 5. As our numerical studies
indicate for stronger perturbations, the most robust excitation is the dressed soliton
(X K< 1/17), whereas the effective particle soliton (A >» 1/1) very quickly begins to
show dispersion induced by the curvature of the potential for the relatively large
perturbation amplitude used in this case.

We collect our numerical results for solitons with initial velocity 141 well above
the resonance at k in Fig. 6. This shows the effect of cosine-potentials with a
wide range of wavelengths on a fast moving soliton for large times. As long as
the initial condition is well separated from the parameter region of competing
lengthscales (r? k), the soliton can propagate in particle-like fashion for relatively
large perturbations.

DISCUSSION

We have seen that the perturbed NLS equation can support soliton-like
excitations as long as their two characteristic lengthscales are very different from
the typical lengthscale of the perturbing potential. These excitations have either the
shape of unperturbed solitons and move like particles in a long wavelength effective
potential, or their shape is strongly modulated by a short wavelength potential and
they move like renormalized particles.

We identified two different situations of competing lengthscales when the
simple picture leading to a collective variable description fails: phase-lengthscale
competition and amplitude-lengthscale competition. In both cases a large number
of degrees of freedom is involved in the dynamics, and a simple collective variable
description is no longer feasible. In these cases a small perturbation already can
lead to a breakup of the coherent excitation, generating radiation as well as trapped
smaller excitations.

Multicolor perturbing potentials of sufficiently small amplitude and with
small or vanishing Fourier components at the wavelengths leading to lengthscale
competition allow fc. long-lived soliton-like coherent excitations. The dynamics of
these dressed solitons can be described by a collective variable approach similar to
the one given above.

The nearly elastic collision of two dressed solitons 2 shows that, apart from
situations of competing lengthscales, those features of the NLS equation, which are
usually connected to its complete integrability, are relatively stable under a large
class of spatially periodic or quasi-periodic perturbations which break the complete
integrability. This "structural stability" of the NLS equation explains its relevance
for many physical systems (e.g., optical fibers, plasmas) where perturbation of the
completely integrable NLS equation are not necessarily small. It is not the complete
integrability of the NLS equation which seems to be important for this structural
stability. We have, for example, demonstrated7 that already a cosine-perturbation
like in Eq. (1) can lead to soliton chaos in the two-soliton long-wavelength case,
emphasizing the nonintegrability under this perturbation. Nevertheless a successful
collective variable description is still possible in this case.

Our results indicate that, for a given correlation length of the disorder present
in a nonlinear system, spatially extended coherent excitations are much more stable
than excitations with a width comparable to the correlation length. Correspondingly,
in the case of a lattice we expect that nonlinear excitations extending over many
lattice spacings are more stable than excitations extending only over a few lattice
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sites. The former can more effectively average-out impurities and modulations on
the scale -. a few lattice spacings than the latter.

In t ýie case of polarons the charge of an electron added to an ionic crystal leads to
a lattice distortion giving rise to an effective (nonlinear) self-interaction of the excess
charge. Polarons (and bipolarons for pairs of electrons) are the resulting coherent
nonlinear excitations. They can extend over a few lattice spacings distorting the
lattice strongly (small polaron) or over many lattice spacings with a milder lattice
distortion (large polaron). In disordered ionic lattices large polarons are therefore
expected to smooth-out the disorder and propagate long distances before they are
scattered. In contrast, small polarons are much more strongly affected by disorder.
They are expected to be scattered more often and to be trapped even by local
impurities.

Finally, we mention two directions of our research on the NLS system. First,
we are extending the class of perturbations to spatially random disorder. A
collective variable approach combined with inverse scattering perturbation theory'0

is giving information about the radiation generated in these potentials, as well as our
other cases. Second, the collective variable approach is being extended to higher-
dimensional, perturbed field equations. The behavior of single excitations is. of
course, expected to be much richer in two and more spatial dimensions. For example,
numerical studies3 on layered magnets and two-dimensional Josephson junction
arrays suggest that both "vortex" and "wall" elementary excitations, and their
vortex-vortex, wall-wall, vortex-wall interactions, are crucial elementary processes
controlling the bridge between microscopic descriptions and macroscopic responses.
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An interesting and important question in the study of the behaviour of solutions of dis-
sipative partial differential equations, is whether it can be shown that large fluctuations or

excursions away from temporal and spatial averages can occur. If it can be demonstrated
that the solutions of these equations can allow such fluctuations away from averages, then

these must have narrow spatial and temporal bandwidths and the width of these will give

information about the smallest scale in the flow. Any numerical scheme must 'resolve' these
spikes to get an accurate representation of the flow. The question of the smallest length scale

is the topic of this paper.
In the theory of attractors in PDEs1 ,2"3,4,s.6 it has become conventional to measure the

smallest scale using upper bounds on the Lyapunov dimension of the universal attractor.

This upper bound Ar, is usually interpreted as the number of degrees of freedom in the PDE

under investigation. On a domain [0, L]d of volume Ld (d spatial dimensions), A/" is related
to the minimum scale I by Ar = (L/I)d. In other words, A. represents the number of eddies

of volume Id which are contained in the box of volume Ld. The only problem that exists
with this approach is whether computing a lower bound on I from an upper bound of the

Lyapunov dimension is always coriect. In general this identification is not quite so simple
as one might hope. In fact, for the complex Ginzburg-Landau (CGL) equation on periodic

boundary conditions,

At = RA + (1 + iv,)AA - (1 + iJL)IA12A
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it was shown analytically' that when d = 2 (but not when d = 1), very spiky fluctuations

(interpreted as strong turbulence) can occur in certain regions of the (y, v) plane but not in

the rest of this plane. The spiky fluctuations occur on scales 1 > R-10, whereas in the rest

of the plane, where only weak turbulence can occur, I > R-1'2. The Lyapunov dimension

of the attractor in both regions was found to be uniform giving 1 > R-1/ 2 . In some sense

this result is not surprising as the method of computing the evolution of volume elements of
the universal attractor through which one finds an upper bound on the Lyapunov dimension,

requires a time average on low norms of the velocity field. It contains no information on higher

norms, in which the energy may be appreciable during the interval of the spike. This average
takes account only of dynamics on scales larger than the spikes. In this sense, this method

is certainly good for weak turbulence but is less sure for strong turbulence. It therefore
seems necessary to find an alternative definition of a length scale which takes account of the

possibility of large spikes or fluctuations.

In what follows we concentrate on one of the most important systems of dissipative partial
differential equations, namely the Navier-Stokes equations, even though the argument can be

applied to other parabolic equations.
The conventional scale in 3d turbulence is the Kolmogorov scale which is usually defined

as

I E AKG = (v3/C)1/4

where v is the viscosity of the fluid and

c = 2vL- 3 j(Du_)2dx

is the energy dissipation rate per unit mass and time. This scale can be found via the

Lyapunov dimension of the 3d Navier-Stokes attractor. Below we show how to obtain a
set of length scales which give the Kolmogorov scale for flows which represent homogeneous

decaying turbulence. For more general flows we show that the length scales are much smaller

than Kolmogorov.
We take the Navier-Stokes equations on a periodic domain 11 = 10, Lld in d spatial di-

mensions, with v as viscosity and a COO time-independent forcing function f. In the velocity
form they axe

ut + (u . V)u = vAu - VP + f div u = 0

In the vorticity notation these assume the following form

wt + (u . V)w = vAw + (w . V)u + F

w = curl(u), F = curl(f).

The vortex stretching term (w . V)u vanishes for d = 2, but not for d = 3. In this latter case
it has a strong influence on the evolution of the flow. Now we define a set of quantities in d

spatial dimensions8 ,9

d

FN U ((D u)d x + rT2 J(D f)2dx) =_ HN + fN
i=1 Jnl=N

where ro = v-1L
2

, DN = a and + - --+- = N.
ad n



From the Navier-Stokes equations, we can prove' that the FN satisfy for N > 1 and

d 2,3 the differential inequality (ladder inequality)
1 ~ Fl+I/a

-EVN < N P ° + (CN,,IIDujO. + v F
2 Fl/a0! * N-a

where the cN,, are constants, 1 < s < N, A-2 = + A72 )q is the cut-off in the spectrum

of the forcing, and IIDuIIo = supZEO IDu(x)j. Then we can prove' the following in 3d

IlDullo _< cv- 3 [ivb1+ IIuuil] + LV3 /,\-2- czvAo2

<IIDuIloo > < c v-3 [< IIDuII• > +IIDufI11] + L-3/ 2 < lIDul11 > +c2VA2.

In the vorticity form they assume the following expression

II11W--i 2,3  + L + C2 0
(Ilwlloo) < c• iv3 [(11,W,114) + IIu,.,l + L-3/ 2(II1•I12 + c2,.,A 0

2.

The overbar means limnsup over all smooth initial conditions as t -. oo, the < • > means time
average, the c's are constants, and i1g11" := fo lg(x)lPdx < +0o, p> 1.

Now we define our dynamic length scales as follows:

(length)-' =_ j1-1 F -7

If we time average the square of these length scales we get

i~ 1-2 >= \FN/ /

Then we can show that the following is true8

<1-2 > <_ c V-1 < llDull,, > +A-2.

For homogeneous decaying turbulence, when IlDulloc ; I1DuI12L-3/2 we get that, up to a
non-dimensional constant, I is bounded below by the Kolmogorov length scale, that is

I > CAKG.

This result was also obtained by Henshaw, Kreiss and Reyna10 .

More generally' inserting the < HDullo > estimate found above we get:
<-2 > < 2 + A-2 + \- 2 + ,- 4 [< IIDu114> +>lDuulI•]•

The two extra terms with the V-4 coefficient in the inequality above, reveal the mechanism

of how deeper scales than the Kolmogorov scale AK are potentially possible. In fact, if

< DJDuI > remains finite, the v-4 coefficient is significant as it allows these terms to become
large for high Reynolds numbers.

If, instead of taking the time average, we consider the limsup over all smooth initial

conditions as t -- oo then for d = 3 we get the following results

rD'J2+ IIDufAI~]
V4

Again, if JIDUI14 remains finite one can see that these length scales are even smaller than

those computed via the time average operation, and, we believe, they are the smallest.
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HAMILTON STRUCTURE OF

UNSTABLE NONLINEAR SCHRODINGER EQUATION

Sergei A. Darmanyan' and Valery I. Rupasov'
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700135 Tashkent, Usbekistan21ntitute for Spectroscopy
Russian Academy of Sciences
142092 Trdotak, Moscow Reg., Russia

INTRODUCTION

It is well known the dynamics of short pulses in optical fibers is described by the
following equation+ i,,.+u,.u+2'y(Iu,.)u = 0 (1)

where u, a, t are dimensionless amplitude of the electromagnetic field, propagation dis-
tance and time respectively. The nonlinear modulation of a high frequency mode in
electron beam plasma2 is also described by the equation (1), which is different from
conventional nonlinear Schradinger equation by the permutation of time and space
variables. The Eq. (1) has been named by authors of paper' as the unstable nonlinear
Schr6dinger equation (UNSE). The inverse scattering method for Eq. (1) has been
developed in the paper3.

Here we construct the Hamilton structure of UNS equation that plays the very
important role for the correct quantizsation of UNS model. The quantization method
proposed by Lai and Haus4 is valid only in quasi--cassical limit.

HAMILTON STRUCTURE

The unstable nonlinear Schr6dinger equation can be derived from the variational
principle for action

S= dt[L

where the Lagrange function of the field is given by

L f dzUu, + 1(9.u - Uu.) - -v(ut)] (2)
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The canonically cmjugated momenta iQ(t, z) and It, z) to the fields (coordinates)
uQt, z) and 1(t, z) we determined by the following eipemons

6L
r(t, 2) !E L =(3)

6LW• t, ) Fm jj t,,

Using the conventional definition for the Poisson brackets of any field functi-uals

g =d[(f6 - L9gLf + 6(f L -L 6gf

we find the nonvanish canonical Pdoson brackets for the fields and momenta

{f"(z),u(y)} = S(z-Y) (4)
{Y•z),ip)} =6(A- Y)

The model Hamilton function has the following form

H - f dz(,.,, + rv) - L = f dz[Wir + NO,. +sU,,u)1 (5)

It is easy to see the Hamilton equations of motion for the dynamical variables

6fffHu=L = (6)
6H

6ff"T#, = {jr, Y= -.. = -iu. - 2,y(uu)u

are equivalent to UNSE.

The model Hamilton function is determined by To0 component

H = dzToo

of the momentumn-energy tensor

6 L 6L
6U.V

(where u,. = Ou/Oz" , z" " (t, z)) and the momentum of the system by Tio component

P = J dzTo= f dz(-uu. -+- t.)'" I dz(x'iru. + TA.) (7)

We also can determine the charge and the current in the system. Multiplying Eq.
(1) by U and conjugated equation by u and subtracting .Ae second expression from the
first one we obtain the following continuity equation

8+ o

Hence, the e on

Q=i f dz(u -Uu) = i f dz(UWr- ru) (8)
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one can consider as the charge, and

j=dzuu (9)

as the current in the system.

POISSON BRACKETS

FOR MONODROMY MATRIX ELEMENTS

The auxiliary spectral problem

4. = U0,

where
U = 2AijAo + -VRUo÷ + wo-)] + J-R(Uo+ - uto-) - iy(-u)o'

and ai are ordinary Pauli matrices, has been investigated in paper3 . Here we present
the expression for the Poisson bracJets for monodromy matrix elements. First of all
note that the Poisson brackets for U-matrix elements are

{U(z, A) @ U(y, 4) = i-3,/j2(3 - y)[o" 0 C+4 -+ @ 0'] (10)
-iY 2 U6(Z- )[go 0 a- _ a- e a,]

+ 2iy(A + j#)(z - y)[÷ 0 a- -- - 0 a+]

Then, following to Takhtajan and FaddeevO we easy obtain the following expression
for the monodromy matrix T(z, yA) on finite interval (xy)

{T(z, , Y ) 0 T(z, y, p) I = [r(A, p), T(z, y, .) 0 T(z, y,j)] (11)

where [,] denotes the commutator, 0-tensor multiplication and

0 0 0 01

0 -1 1-I

(0 0 0 0

It is interesting to note that in our case r-matrix coincides with r-matrix for conven-
tional nonlinear Schu•linger equation.

CANONICAL QUANTIZATION

Using the canonical quantization rules we should define the quantum unstable
Schradinger (QUS) model as the model with the Hamiltonian

H = I dz[v+w + iu+u. + 7u+u+u u] (12)

and the commutation relations for the operators of the fields and momenta

[u(x), W(Y)] = iW(z - Y), [[+(z), W÷(Y)J = s6(z - Y) (13)

In the abseuce of interaction (y =0) the model eigenstates are plane waves
(cc exp[i.(.Sw- kz)]), where w2 = k, and hence our model contains both particles
(w = +-1k) and antiparticle. (w -v*'). Restricting our consideration by the sector
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k > 0 we can represent the field operator.• s a superposition of the plane wave

corresponding to particles and antiparticle.

u(tz) j . {I•aexp[i(wt - kz)] + b exp[-i(wt + k)]) (14)

lr(tp) = j rt exp[-i(wt - kz)] - b ,exp[[(w + k-)l)

where w(k) = +vf-. In the terms of creation (annihilation) operators of particles a+ (a)
and anti-particles b+ (b) the free field Hamiltonian and the operators of momentum,
charge and current tabsu the following form

Ho = / •--(k)(a&+a, + b,+b,) (15)

p = J!%(a4ak-b,+bk) (16)

Q= J~t(ak~ak-b,+bjb) (17)

CONCLUSIONS

Thus, we have shown the consistent application of the canonical quantisation
rules to the dasical UNS model leads to quantum model containing both particles
and antiparticles. It is easy to see that our quantum version of UNSE is substantially
different from the conventional quantum nonlinear Schr•dinger models. So, at present
the exact diagonalisation problem of quantum UNS model is open one.

REFERENCES

1. A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in
"dispersive dielectric fibers, Appl. PhyA. Lett. 23:142 (1973).

2. T. Yajima and M. Wadati, The unstable nonlinear Schr5dinger equation, in: "-nte-
gable and Superintegrable Systems" B.A. Kupershmidt, ed., World Scientific,
(1990).

3. T. Yajima and M. Wadati, Solitons in electron beam plasma J. Phys. Soc. Jpn.
59:3237(1990).

4. Y. Lai and N.A. HRa, Quantum theory of solitons in optical fibers. 11. Exact
solution, Phis. Rev. A40:854(1989).

5. L.A. Takhtajan and L.D. Faddeev. "Hamilton Approach in Soliton Theory,"
(in Russian), Nauka, Moscow (1986).

6. H.B. Thacker, Exact integrability in quantum field theory and statistical systems,
Rev. Mod. Phpe.53:258(1984).

104



ON THE FORCED ECKHAUS EQUATION

Silvana De Lillo

Dipartimento di Fisica

Universith di Perugia

INFN Sezione di Perugia

Perugia, Italy

Parametrically forced nonlinear Schroedinger type equations have recently been investi-
gated1 in connection with the existence of nonlinear bound state solutions and of their stabil-

ity. In this note we review some recent results2, concerning the Eckhaus equation in an

external potential V(x) and the properties of its bound state solutions. Some new results,
related to the time asymptotic behavior of the solutions, will also be reported.

We consider the parametrically forced Eckhaus equation2

ilI~t + x ix+2(l'IV2)x %p+jj4 ' -xV(x)'v=0 (1)

where 'I--'m(x,t) and the parametric forcing V(x) acts as an external potential.

We introduce the linearizing transformation

, : •p(x,t)=C 'F(x,t)exp d ' ( ',t(2.a)

Let us now consider a harmonic oscillator potential

V(x) = x2  (7)

The general solution of the Schroedinger equation (3) has the (well known) form
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9(Px~t)= 1c, Hn (x)ex4-±X2 -i(2n +1)t (8)
n=O

where Hn(x) are the Hermite polynomials.

The corresponding general solution of the Eckhaus equation (1) is given by (2.b) with

(8). The special case en = 8• corresponds to the time independence of I p(x,t) 12

[q(Px,t)[2=Cn2 H2(x) 2)n exp(-x2. (9)

The same property still holds for 'P(x,t), namely

ITI(x,t)I2=C2 H2 (x)exp(_x 2 )[C 2 +C dyH2 (y)exp(-y2)]- (10)

MH (_ 10).dyH

is also time independent. We note however that 1qp(x, t)I is symmetric in x, while the synrnx-

try is lost for IT (x,t)I.

We finally note that for the harmonic oscillator potential (7) the mean value i(t) of the

position x with respect to the solution 4p(x,t) of the linear Schroedinger equation (3)

"j(t) = _+i dxxl(p(x,tA2  (11)

oscillates harmonically

i(t)=3E(0)cos2t +2 x(0)sin 2t . (12)2

No analogous results holds for the mean value i(t)of x, taken with respect to 'P(x,t):

i(t)=Jdx xjW(x, t)12  (13)

This is of course a consequence of the nonlinear correction that appears in (6.b).

I I(x,t)=w)(x,t)/[I2 + 2_x dx'lIw(x',t)12 ],Y2  (2.b)

with C a constant. We also restrict our attention to the case in which '1(x,t) and p(x,t) van-

ish (sufficiently fast) as x -- * -_o.

It is immediate to see that (2) maps equation (1) into the linear Schroedinger equation
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i%+(Pxx -V(x)(p=O (3)

Note that the above result is independent of the external potential V(x), moreover it

would hold without modification even if the external potential were time dependent.
Bound state solutions can be normalized by setting

-dxfQp(x t)12 =J1 dxjI(x, t)2- = (4.a)

with the constraint on the constant C

]C12=2/(e2 -1) .(4.b)

For this class of solutions of the linear Schroedinger equation there hold the classical

Ehrenfest theorems

+o= 2 .+o

(d/dt)2 r: dx xjq(x, t12  21: : dx Vx (xAp(x, t)12  (5.b)

For the solutions 'I(x,t) of the Eckhaus equation (1), the corresponding results are

(d/dt)J+ dxxlp(x,t)12 =iJ dx{W(x,t)]* - P(x,t)]* Px (x,t)} (6.a)

(d/dt)2 dx xI(x, t) 2 =- 21:: dxVx(x)If(x, t)12 +

-2 2 dx[(ITI(xlt)1)2](6)

Let us now turn our attention to the time asymptotic behavior of the solutions of the

Eckhaus equation (1). Without loss of generality we put C=l in (2) and consider the initial
value problem for equation (1), characterized by the initial datum

'P(x,O)='PO(x) (14)

asymptotically vanishing as I x
Via (2.a) we obtain the (asymptotically vanishing) initial datum for equation (3)
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(PxO)X)='io~x~ex dx, ,VOX, 2(

The initial value problem for equation (1) is then solved by solving the analogous
problem for equation (3) and then by recovering the solution 'P(x,t) via (2.b), once ((x,t) is

known.
The long time behavior of the solution q(px,t) of the linear Schroedinger equation (3),

corresponding to the initial datum (15), can be analyzed with standard scattering techniques.

For potentials V(x) belonging to the class L I where
2

L I ={V(x):J"1+1x1 +X2)V(x)dx <} . (16)L2

The only nondecaying contributions to the solution 4p(x,t) are due to the bound states of
the potential3. The transformation (2.b) then implies that an analogous result holds also for
the solution ¶(x,t) of the forced Eckhaus equation. Localized solutions of the nonlinear
equation (1) are then obtained as a nonlinear combination of the bound states of the poten-
tial of the linear Schroedinger equation (3).
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NEW ASPECTS OF CHAOTIC DYNAMICS

IN NONLINEAR SCHRODINGER SYSTEMS

Th. Eickermann, R. Grauer, and K.11. Spatschek

Institut fGir Theoretische Physik 1, Heinrich-fleine-
Universiti t Disseldorf, D-4000 Dfisseldorf 1. Cermany

INTRODUCTION

A generic model equation for the envelope of weakly nonlinear. weakly dispersive
waves is the nonlinear Schr5dinger (NLS) equation. ('ollisionallv damped Lalignmir-
waves in a plasma driven by ai external rf- capacitor field for example are described
by the drivenl and damped N LS

iq, + q. + 2 1 q J2 q - -q= -i' - i-,q. (1)

Although this equation is integrable only for I = O,t = O it is well known' that
soli ons still play all iml)ortant role for hlie dynamics in (it(e general case. Nozaki and

Bet'ki' have observed, that a phase locked soliton like solution of (I) exists as long as
the damping rate -j is not too large. Increasing the driving (. lite system undergoes a
Htopf--bifurcation and the soliton starts to oscillate periodically in time. In the nearly
infinit e- line case furt her increase of( leads to a. sequence of period doubliiig bifurcat ions
and tfiiially to a chaotic time evolttion. Au exatmple of such a chaoti' niot ion is shown
in fig. L.a) . A more detailed numerical investigation' shows. that the system obeys the
Feigenban n --scaling.

6.2 (b)

6.0

20 I.
5.8

5.4Iql, 5 .4 .. . . . .. . . . .. ..-

0.13 0.14 0.15 0.16

Fig. I a) chaotic time evoluition ofa soliton with( 0.15, / = 0.11, = 1. b) period -douiliiig
for -, = 0.1 1. = 1. length of system I = 80.
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Fig. 1.1,) shows a characterist ic paraimeter at Pohncare I tines plotted vrsuis t. which is
uised as a I ,1 fit'rcatioll parameter here. In thei present colitriblution we .show (by iituiteri-
cal siuhlat iou), that besides the period doubling route to chaos also ot her pheitlouic•ia
which are typical for dynamical systems can be observed. Oie of them is intermnitteni\v.
which is expected and found (lose to tle regular wilndows ii tfli clhaotic regime. Ill
addition. choositig tie p)arameters of ( 1) 11 analogy to (,raite, alid 3liriih11. who li\es-
\igated breather dynamltics ill thle NM'S regilme of a divert and dampl~ed sine (Goldol
e(julat iol, we call fild (I quasiperiodicityv here too.

OtUr second task is to compare two mIethods for derivinlg low degree of fieedon
models for tlie dynanaics of thei' PDE. We can mnake use of tile fact. that ( I ) is near
integrable atnl expand the solution of t(e equiation ili file (nonlittear) base of solitolls
and radiation. 1he second way is flully numericall y. The lx aarhiilliiet l ýX'e expansion
allows its to find 1he optinuntm base fuinct ions for a linear examnsion. 'hose c-all be used

iii a (alerkin method.

NUMERICAL RESULTS

From the theory of nonlinear staps it is known. that a saddle node bifurcation is
tyl)ically accoml)anied by int ermittency. Asymptot ially the number of regular iterates
n, is (onnected with the distance front the bifurcation point Iby:

, - (t - (o)-112 . (2)

Such bifurcations take place at the limits of the regular windows in the chaotic regime.
h'lerefore we investigated the large period :3 window. which can be seen in fig. L.b).

Fig. 2.a) shows the real part of the solution at Poincar6 times for ( = 0.1583-19.+- =
0.11. The interchange of regular anid chaotic behaviour (-alt clearly be seen. lit fig. I
1/,n is plotted as a function of . As predicted, this function is linear. with the
bifitrcation point to = 0.158351.

0.025
(a) (b)

0.020

0.5
-c.J 0.015

0.010
0

0.005

-0.5 0
0 5000 10000 0.15825 0.1583 0.15835

t C

Fig. 2 internmittency for 1 = 0.11.-,' = 1., L 0. a) ( = 0.15XN319 . real part of solution at
Poicarn- tintes. b) scaling of regular tii.es: I/n', is plot ted as a funct ion of ,.

T'aki et a].' have given formulas, which connect the paranmeters of a driven damped
sine Gordon equation and (1). Using them for the set of paramteters in which Grauer
and Birnir2 found quasiperiodicity, we get to weakly damped (I = 0.035) short length
(I = 24) Schr6dinger-systems with periodic boundary conditions. As fig. 3 shows, we
can find a narrow intervall of quasiperiodic behaviour between period 1 and period 3
states.
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0.6 (a) 0.82 (b)

0.2 0.8

-0.2 0.78

0.1 0.105 0.11 90000 95000 100000
£ t

Fig. 3 (luasiperiodicity for 1' 0.035., 1. L = 12, a) qp. and period 3 phaselocking. b)
real part of solution at Poincar6 times for ( = 0.1066.

IST DIAGNOSTIC AND VARIATION OF ACTION METHOD

In the following we discuss two different collective coordinat( descriptions. The
first of them has been discussed in great detail elsewhere:3"4 and is therefore disrihed
ounv briefly. Making use of the fact, that for -I,( << I the system is near integrable,
we solved the Zakharov-Shabat scattering problem numerically (for both infinite and
periodic boundary conditions) for data like those shown in fig. L.a). The result was.
that a soliton and radiation modes about k = 0 dominate the dynami'cs. Based on this.
we choosed a soliton and k = 0-radiation with time dependent amplitude and phase
as ansatz- functions in the Lagrange density for (1):

I = --r9,+ q q,- -•'q i (3)

The resulting set of 4 real Euler Lagrange equations shows a good qualitative and
quantitative agreement with the PDE.

KARHUNEN-LOEVE EXPANSION AND GALERKIN APPROXIMATION

A disadvantage of the method :rated above is that it is restricted to near integrable
systems. A more general aproach is based upon the Karhunen Loývc expansio16,7.

(iven a time series q(x, 1i). i = I.. and the two -point corrielation function

K(x, .r') = (q(x)q'(.r')) (0)

with 1N

Sf(ti)(5)

the following eigenvalue problem

I K(x,.r').r')dx = Aioi(.r) (6)

is defined. It's solutions are called empirical eigenfunctions. Among others they have
the i)rol)ertv, that for each N, they build an optimal set of base functions for an ap-
proximation of q in the sense, that. the approximation error

i q(.r) - , .(7)
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is minimal. Trhe eigenvalues are a measure for the average mass contained in the
modes. From a time-series with 5000 samples taken from a run in the time-chaotic
parameter- regime, we archieved the modes and eigenvalues shown in fig 4. As one can
see 2 modes already contain 97 (X of the mass and 3 modes even 99 %(. Using these
modes in a Galerkin-approximation, it's a simple task to contruct sets of ODE's with
an arbit rary number of modes.

Fig. 5 shows a bifurcation-diagram based on a 2 mode--model. The 3-mode -model
is not plotted here, since its results are not different from the former. Since for fig. L.b)

the Poincar6 map was defined in the same manner as for fig. 5. using the projection of
the PDE-soluttion to the first empirical eigenfunction, those pictures can be compared
directly. Finally it is interesting to compare the modes, found by the KL-expansion
with the soliton or radiation-modes, which had been used in the variation of action
method. By a numerical fit. the 1. mode is clearly identified as a soliton (1.4 % deviation
in mass). The 2. mode is essentially (up to a 10 %, error) the derivation of the soliton

with respect to it's amplitude.

0.3 6.5
1st mode - iI
2nd mode

0.2 6 ,,ode 6

0.1 . 5.5

0 4 ....... 5
-30 0 30 0.13 0.15 0.17 0.19

x

Fig. .4 First 3 empirical eigenfunctions with Fig. 5 period-doubling in 2-mode
probabilities of 82 %, 15 % and 2 %. Galerkin-approximation, real part of am-

plitude of 1st mode at Poincar6-tinies is
plotted versus c.
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We consider the sine-Gordon (SG) system including a local inhomogeneity

Utt - uZ. + (1 - f6(x)]sin u = 0, (1)

where S(x) is the Dirac 6-function. When the perturbation is absent (f = 0), the
SG model (1) supports topological solitons (kinks). For f > 0 the system admits a
localized impurity mode: u = a(t)e-caxI/2, where a(t) = ao cos(fti+ 0), fl = F1 - f /4.

We have studied the kink-impurity interactions by direct numerical simulations
with Eq.(1). The initial conditions are taken as a kink centered at X = -6, moving
toward the impurity with a given velocity Vi > 0. The main results are summarized
as follows

9 There are three different regions of initial kink velocity, namely, region of pass,
of capture and of reflection (see Fig.1). A critical velocity Vc(c) exists, such that
if Vi > V., the kink will pass the impurity inelastically and escape to the positive
infinity, losing part of its kinetic energy through radiation and excitation of an
impurity mode.

If Vi < V, , the kink cannot escape to infinity after the first interaction, but
it will stop, and then return to interact with the impurity again. For most
velocities, the kink will lose energy again in the second interaction and finally
get trapped by the impurity. However, for some special incoming velocities, the
kink may escape to the negative infinity after the second interaction, i.e., the
kink may be totally reflected by the impurity (see Fig. 1)

In quantitative analysis, we find that the time interval between the first and
the second interaction can be estimated by

Ta2(V,) a + b (2)
VC2 

-V
2

where Vi is the kink initial velocity, a and b are two parameters, e.g., at f = 0.7,
we have a = 3.31893 and b = 1.93.
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9 We have observed that the reflection of the kink is carried out in two steps,
the first interaction excites the impurity mode and traps the kink, while the

' second interaction is just a reverse process, it will extinguish the impurity mode,
retransferring enough energy back to the kink, and thus allowing it to escape.
In this case, a resonance condition is satisfied

T 12(V) = nT,. + T. (3)

where Ti,,, is the period of the impurity mode oscillation, r is an offset phase,
and n is an integer.

e Combining Eqs.(2) and (3), we may obtain a formula to predict the centers of
the resonance windows,

a2

(nTin+r -b) 2 , n=2,3 .... (4)

This formula can give very accurate predictions comparing with the numerical
results.

0.14

0.07

>"0.00

-0.07

-0.14
0.25 0.26 0.27 0.28 0.29

VI

Figure 1. The final (SG) kink velocity as a function of the initial velocity at = 0.7.
Zero final velocity means that the kink is captured by the impurity.

Now let us consider the kink-impurity interactions in the 0' model

,- "_x0 + [1 - fS(X)](-_ + 'k3 ) = 0 (5)

In the absence of perturbations, the 04 model also admits kinks, which have an
internal oscillating mode with frequency w, =- V31. It is well known that the
existence of the kink internal mode is very important for the resonance phenomena
in the kink-antikink collisions [3]. In the presence of the impurity, the 04 equation
also has an impurity mode: u(x, t) = aocos(t +O)e-'I'I, where 11 and f are connected
by the dispersion relation 122 = 2 - 2

114



By numerical simulations we also observe a set of resonance windows in which
the kink can be reflected by an attractive impurity (Fig.2). We find that both the
kink internal mode and the impurity mode are excited during the scattering, and the
resonance phenomena observed are due to an energy exchange between the kink tran-
slational mode, kink internal mode, and the impurity mode. Moreover, we observe a
new interesting feature in the resonant interactions: some intermediate windows disa-
ppear showing quasi resonance effects (see Fig.2). Although a much smaller velocity
step (AV = 10-') has been used to scan these windows, we have not found real kink
reflection. Instead we have only observed quasi-resonances, i.e., if the kink initial
velocity is close to some values, the second interaction will reflect the kink at a larger
distance from the impurity, but the kink cannot escape to infinity. Therefore, the
resonance structures observed here are quite different from those for the SG model
in which the resonance windows come out one by one and they can be easily predic-
ted by a simple formula (4). Furthermore, here we have observed a "three-bounce"
resonance window in which the kink can escape after colliding with the impurity for
three times.

0.16 E=0.7

0.04-0

-0.08

-0.20 I
0.24 0.28 0.32 0.36

V,

Figure 2. The same as in Fig.1 but for the 04 model (5) with c 0.7. The two stars
indicate the disappeared windows.

To study analytically the kink-impurity interactions in the SG model, we use a
collective-coordinate method taking into account two dynamical variables, namely
the kink coordinate X(t) and the amplitude of the impurity mode oscillation a(t)
(for the 0" model the kink internal mode amplitude must also be used, see Ref [4]).

By substituting the ansatz

u = 4 tan-' exp[x - X(t)] + a(t)e-'1xI/2 (6)

into the Lagrangian of the system,

L _ U2 - - (I - E6(x))(1 - cos u), (7)
2 t1
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we may derive the following (reduced) effective Lagrangian

Letf = 4- 2 + 1(a2 - Q2a2) - U(X) - aF(X), (8)

where U(X) = -2e/ cosh2 X , and F(X) = -2e tanh X/ cosh X. The equations of
motion for the two dynamical variables are the following

k 8X + U'(X) + aF'(X) = (,
a + £12a + (f/2)F(X) = 0. (9)

The system (9) describes a particle (kink) with coordinate X(t) and mass 8 scattered
by an attractive potential U(X) (f > 0), and "weakly" coupled with a harmonic
oscillator a(t) (the impurity mode). Here we say "weakly" because the coupling term
aF(X) is of order 0(f) and it decays exponentially. In Fig.3 we present a schematic
picture for the system (9). It has been shown that this dynamical model (9) can
describe the main features of the kink-impurity interactions. In particular, it can be
used to estimate the critical velocity and to predict the resonance phenomena [1,2].

Porticle X(t)

Y 

P Poential 
Well 

U(X)

Harmonic Oscillator a(t)

Figure 3. A particle moving in a potential well and weakly coupled with an oscillator.
The schematic drawing of the system (9).
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INTRODUCTION

Since perfect systems are an idealization never found in nature, the study of the
effects of disorder on them is of paramount importance. In particular, nonlinear models,
which have been very much fruitful in many fields of physics,' have been the subject of
an intense effort in this direction.2 A complete description of this problem can only be
achieved through a step-by-step analysis, in which the influence of one, two, and many
impurities are addresed separately, one after the other. In this fashion, the knowledge
acquired on the one-impurity problem helps understand the new features arising when
two impurities are present, and this can be later used to account for the unavoidable
cooperative effects which appear in a system with many impurities present. This work
is a part of such a project, devoted to the study of nonlinear excitation dynamics in
Nonlinear Klein-Gordon models. The one impurity problem is discussed in another
contribution in this volume,3 and here we deal with the remaining stages of the work.

THE TWO IMPURITY PROBLEM

The model we work with here is that of an inhomogeneous sG system which, in
dimensionless units, is given by

U .,-u + [1 +e(6(x) + (z- D))] sin,=0. (1)

Physically, this equation is associated, for instance, to the presence of pointlike inho-
mogeneities in a Josephson Junction, where u stands for the normalized flux.4

A complete analysis of this problem, which includes also the Korteweg-de Vries and
the Nonlinear Schr~dinger equations, has been carried out in Ref. 5. Here we briefly
summarize the results for the sine-Gordon model (I). The problem (1) can be dealt
with analytically in an approximate fashion. Using the perturbation theory based on

Future Directions of Noniear Dynais in Physical and Biological Systems
Edited by PL. Chdids et aL, Plenum Press, New Yodk, 1993 117

I_



the Inverse Spectral Transform,5 '6 it is possible to compute, following the standard
procedure, the spectral energy density emitted by the kink upon collision with the
two impurities. Integrating over the wavenumbers directed backwards gives the energy
reflected by the impurities, and hence the reflection coefficient, defined as the ratio of
the reflected energy to the unperturbed soliton energy. The best way to present the
results is to compare them to the reflection coefficient for one impurity, and this yields

2R2 (1 + D 2/Ir 2 )l/4 cos - I tan-` , when v2 << 1, (2)

R2 1 I d 2coshd 2d cosh 2 d 2

2R-'• 1+3 - + sinh 2 d - sinad ) when (I v2 ) - . (3)

In (3), d - 2D/l'--v2, v is the kink speed, and R] is the reflection coefficient for i
impurities. Notice that in both cases, when the distance between impurities D -- 0,
R2/2R 1 = 2 (the soliton is scattered by a single impurity of twice the strength), whereas
if D - oo R2 /2R 1 --+ 1 (the scattering is independent and no interference between
backscattered waves arises).

1 1 1 1 1 1 1 l l l l l ~ l l l l l l J , i l l 2 .0

0.5

0 1 2 3 4 5 6
D

Figure 1. The ratio of the reflection coefficient of two impurities to that of one impurity. Lines are

the theoretical prediction given by Eqs. (2) and (3). Circles are numerical results; empty for v = 0.9

kinks, and full for v = 0.4 kinks.

The results (2), (3) are shown in Figure 1, plotted as solid lines. It is evident
that fast solitons do not show any signature of interference effects, whereas slow ones
(not so slow as to be pinned by the impurity) exhibit oscillations in their reflection
coefficient as a function of the distance between impurities. The results have been
confirmed numerically, as can be seen also from Figure 1. The small discrepancy for
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t t
Figure 2. (a) Asymptotic difference L., as a percentage of the position X(t) vs time, when e = 0.1,
vo = 0.3 (to = 24.1), and ro = 3t 0 . (b) Long time behavior for the same parameters.

slow solitons is due to the fact that they slow down a little while travelling between

the impurities, as a consequence of the energy loss after the first collision. This effect,
which is not accounted for in our perturbation theory, can be proven' to be responsible

for the differences appearing in Figure 1.

THE MANY IMPURITY PROBLEM

One of the conclusions which can be drawn from the result of the previous section
is that for D > 10 the two impurity scattering process can be regarded as indepen-
dent, i.e., there are no interference effects. Therefore, it is possible to treat the many
impurity problem in the dilute limit assuming independent scattering without introdu-
cing significant errors, which we have recently done for the sine-Gordon" and Nonlinear

Schr6dinger5 models. In this section we present the former analysis.
The equation we study is

Utt -uX+ (I +e b6(Z -a4,))sinu = 0, (4)

where the distances bn = a,+ 1 - a,, are randomly distributed with probability p(b) =
bo-7 exp(-b/bo). If the mean distance between impurities is large, we can use the pre-

vious section results to treat independently the scattering by each impurity. This is

done in the framework of the collective-coordinate formalism, in which solitons are
considered as particles and then 6-functions are substituted by equivalent sech-shaped
potentials of width A (see Ref. 6,7 for details). The key point now is to describe the
scattering in terms of the time distribution of the impurities instead of the spatial one;
i.e., to study the problem by dealing with the time intervals rT, elapsed when the kink

travels between the nth and the (n + 1)th scatterers, and the (constant) intervals to that
separate them, during which the kink travels through one impurity. By doing this, it is
not difficult to obtain the statistical properties of the kink; in this way, we have been
able to compute the mean kink position X(t) (and any other time-dependent function).
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As the expression is actually very cumbersome, we do not write it down here.
Instead, we have evaluated it numerically for different cases; as an example, in Figure 2
we show two plots of the asymptotic difference L.., defined as the difference between the
kink position and the one it should have if it would have traveled with the asymptotic
velocity, which from our calculation turns out to be7

Vorb + A.. +0t0 (5): 1"0 + t0o

T"o being the mean temporal distance between impurities and V0 the kink initial velocity.
Figure 2 shows that, after a short period, in fact, after the kink crosses the length of
one impurity, L.. --+ 0, which implies that we can already estimate the kink position
by using Eq. (5) for its speed. This outcome is the most important one of our work,
as it allows to predict the kink behavior in the random medium from the knowledge of
a few parameters of it. We can also conclude that the important parameter to decide
when the asymptotic regime starts is to, the time for the kink to travel through a single
impurity.

The procedure we have sketched here is general and can be applied ot any NKG
system, irrespective of its integrability. We do not expect radiative corrections to be
important in the dilute limit, due to the absence of interference. However, as a final
remark, we would like to point out that numerical work is needed to check the validity
of the independent scattering approximation.
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INTRODUCTION

Guided acoustic waves, especially surface acoustic waves and waves in elastic plates,
have attracted considerable interest for a number of years, mainly because of their ap-
plicability in signal processing devices'. Due to the concentration of energy at the
waveguide, nonlinear effects are readily observable1 . This has stimulated a large num-
ber of theoretical investigations on various effects of nonlinearity on the propagation
of guided acoustic waves. In certain geometries with material properties homogeneous
along an axis vertical to the direction of propagation, the shear-horizontal component
of the displacement field decouples from the components of sagittal polarization. In the
presence of nonlinearity, acoustic waves of purely sagittal polarization can still exist.
However, shear-horizontal acoustic waves can generate sagittal components of the dis-
placement field via the second-order nonlinearity even in isotropic elastic media 2,'. In
derivations of evolution equations for slow variations of the envelope of shear-horizontal
guided acoustic waves, these sagittal components may usually be eliminated adiabati-
cally giving rise to an effective third-order nonlinearity in the evolution equation of the
nonlinear Schr6dinger type3 . In situations where the second harmonic of a sinusoidal
shear-horizontal wave with wavenumber q has frequency equal or close to a sagittal
guided mode with wavenumber 2q, an adiabatic elimination is no longer possible. This
nonlinear resonance of shear-horizontal and sagittal waves has been discussed in more
detail in Ref. 4 for the case of plate modes. The purpose of this contribution is to incor-
porate dispersion and diffraction into the evolution equations for the envelopes of the
two nonlinearly coupled carrier waves and to discuss, on the basis of these equations,
the possibility of the formation of coupled solitary channels in this system.

EVOLUTION EQUATIONS

The displacement field il(, t) in an elastic plate has to satisfy the equation of motion

pui,' = TM,n,M (1)
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with the stress tensor (TMm,) having components

TMrm ` SYM nNtnN + I SmMnN1LUnNU1,L (2)

up to cubic anharmonicity. Here, p is the mass density of the elastic medium and
(SM.N) and (SmM .N IL) are material constants. In addition to the equation of motion
(1), the displacement field has to satisfy the boundary conditions T3m = 0 at the upper
and lower surface of the plate which we choose to be orthogonal to the z-axis. Following
Ref. 4, we write the displacement field in the form of an asymptotic expansion

,I = CI) + f17(2) + ... (3)

the first-order term of which consists of a shear-horizontal wave with wavenumber q
and a sagittal wave with wavenumber 2q:

0 w1 (z, 2q) \
i1(;,t) = ~coskhz + 4) ei(qTr.m)A+ ( )3 z 2q)) -w~b (4)

Here, the propagation direction has been chosen to be the x-direction. The amplitudes
A and B depend on stretched coordinates X 1, Y1, TI, X 2, Y2, 72,.... In order to obtain
the dominant nonlinearity as well as diffraction and dispersion in the evolution equa-
tions for A and b, we have to scale these stretched coordinates in powers of E1/2 rather
than in powers of f, i.e. X, = 1E/2x, X 2 = x,.... This means that the effect of the
second-order nonlinearity is enhanced as compared to the case of nonresonant coupling
since it acts on shorter scales. Carrying out the multiple scales analysis, we are led to
the following pair of coupled evolution equations:

1 1
i(B, + VBx) + lg11Bý + -gLB ,w + (20 - w)B = M*A 2  (5)

1 1

i(At + VAXý) + 2YI;Axx + 2 -LAyv = MA*B, (6)

where B = bexp[i(2M - wo)t]. V is the group velocity of the shear-horizontal mode
and gFl and Dt are the second derivatives of the linear mode frequency with respect
to the wavevector component in x- and y-direction, respectively. The corresponding
quantities without overbar refer to the sagittal mode. The coupling constant M is
essentially an overlap integral involving the second- and third-order elastic moduli and
the displacement profiles of the two modes. In order to study self-focussing and the
formation of coupled channels in this system, we consider a stationary situation and
neglect the second derivatives with respect to x in comparison to the first derivatives'.
After rescaling, the system of evolution equations takes the form

ZBý + QB,,, + AB = A2 (7)

iA, + Ay3, = ±2A*B. (8)

The lower sign in equ. (8) corresponds to the case of V and V having different sign,
and the upper sign corresponds to the opposite case which we shall consider here.
Furthermore, Q• = (g.iV)/(- 1.V) and A is proportional to the frequency mismatch
20 - w. In the following, we assume Q to be positive.
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SPECIAL SOLUTIONS

The simplest nontrivial solutions of the coupled nonlinear system of equations (7)
and (8) are homogeneous in the y-direction,

A(x, y) = Aoe-K (9)

B(x,y) Boe- 2iKx, (10)

where

K = ,1+ [(A)2+ (A.11. (/1)

An analysis of the linear stability of these solutions against modulations - expf±i(qy
- KX)] reveals two branches for the dispersion relation K(q), one "optical" branch with
K(q --+ 0) 0 0 and one "acoustic" branch with K(q --* 0) = 0. Defining F = (4 +
A/K)2 - 4 and H = (2 + 20 + A/K)(2 + A/K), we find, in the limit q --- 0, that the
optical branch is unstable if F < 0, i.e. for -6 < A/K < -2, whereas the acoustic
branch is unstable for H/F < 0.

In analogy to the single soliton solutions of the nonlinear Schr~dinger equation, the
system of equations (7), (8) has solutions which correspond to coupled channels of the
sbear-horizontal and sagittal mode. Such solitary wave solutions can be obtained by
the following reduction of the system (7), (8) to ordinary differential equations in the
same way as demonstrated by Parker and Newboult 6 for a different system of coupled
nonlinear evolution equations:

A(x,y) = Viia(y)e"' (12)

B(x,y) = b(y)e"'-". (13)

For convenience, we introduce the parameters p2 = ail/(2a - A) and q = (2a - A)a/fQ.
Changes of the parameter q at fixed p result in a simple rescaling of the solutions (12),
(13). Fig. 1 shows a profile of two coupled channels for the case p 0.5. It can be seen
easily that for p = 1, both a and b have sech2-shape.

0.8

I ~0.0 •

-0.4 b

Y

Figure 1. Coupled channel profiles for p = 0.5 (arbitrary units).
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Figure 2. Dependence of the profile maxima on the parameter p (q = 1).

For certain ranges of the parameters, "dark" channels can be found with a(y) and
b(y) approaching finite nonzero limiting values for y --+ ±oo. The stability of these
various types of coupled channels and the influence of higher order nonlinearity remain
to be investigated.
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INTRODUCTION AND GENERAL RESULTS

When the long wave propagation problem in the 1-D wave guide of various physical
nature is considered, the following nonlinear hyperbolic equation (NHE)

utt - u.,., = (Pk(u) + aut, - bu,,),, + (cu 2 + fu)xt + gutxx, (1)

seems to present the quite general description for the evolution of the unknown function
u(x, t) of the space coordinate x and time t, in which a polynomial nonlinearity P(u) of
order k, the dispersion and dissipation are taken into account. The aim of the study is
to propose an approach for exact explicit travelling wave solutions (TWS) of (1), which
seems not to be integrable by means of the inverse scattering transform (IST) method.
Introducing the phase variable z = x ± Vt, after integration twice of the result, we have
a nonlinear second order O.D.E with respect to the new unknown u, in the form

u"= Au' + Q(u), (2)

which is, indeed, the equation, describing a nonlinear oscillator with damping (or
the generalized Duffing equation). Here primes denote differentiations with respect
to z, Q(u) is a polynomial, and u is assumed to get the constant values at infinity.
Two conditions are important for the approach under consideration, namely, that the
differential function (DF) should be polynomial, and it should not contain z (at least,
the equation (2) should be reducible to an autonomous one). The following theorem,
proved' recently:

the generalized Duffing equation u" = u' + Q(y), containing an arbitrary poly-
nomial nonlinearity Q(u), can be reduced to the Abel equation: v' = v3 + F(y),
the non-autonomous one with cubic nonlinearity,

provides the further necessary reduction of the integration problem for (2). Moreover
the classical results of the 1st order nonlinear O.D.E. theory can be used, and the
theorem by Hermite2 for integrals of an autonomous equation of 1st order P(u', Q(u)) -

0 is of crucial importance:
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if P(-) has no movable critical points, the genus of corresponding Riemann surface
is either 0 or 1, and then the integral is the rational function of z, or the rational
one with respect to exp(z) and/or to an elliptic function, respectively.

The question arises how to find an integral for P(u', Q(u)) = 0 explicitly, and for this
purpose one can use the well known (Whittaker & Watson3 ) and the most general
representation for any elliptic function in terms of the Weierstrass function P(z) or
p(exp(z)) as follows:

u(z) = A(p(.)) + B(p(.))p'(.), (3)

with rational functions A and B with respect to their arguments.
The advantage of this approach consists in the possibility to exploit for dissipative

problem the following proposition: an autonomous equation v'(z) = q(v) with a poly-
nomial q(v) can be solved in terms of exp(az) and of the Weierstrass function p(z + c)
among the special functions of mathematical physics, because any derivative of both
mentioned can be expressed in terms of a polynomial with respect to the function itself.

However, the Abel equation is not integrable in general case. Therefore we try
to find the solution in the form (3) for the Duffing equation (2) of 2nd order with
rational (or even polynomial) A and B ; this attempt results in various periodic, doubly
periodic, and localized solutions of the NHE with dissipation. The procedure seems to
be quite simple: one should substitute the expression (3) into (2), make independently
the coefficients at each order of p and p ' equal to zero, and obtain the (overdefined)
set of coupled algebraic equations. When a solution of the system exists, perhaps,
under some restrictions for coefficients of equation, we obtain a solution of initial NHE.
Moreover, any mathematical symbolic software for PC can be used very effectively for
an algebra at this stage.

TRAVELLING WAVE SOLUTIONS FOR DISSIPATIVE PROBLEMS OF
NONLINEAR DYNAMICS

To demonstrate the use of the approach we begin with the Duffing quadratic equa-
tion, that corresponds to the problem of TWS of the famous KdV-Burgers equation.
For k = 2 we have from (2)

u" = au'+ cu2 + du + e, (4)

and finding the solution in the form (3), we get

u = aexp2-y(z + zo)pl#/expt(z + zo)], (5)

where a,,3, -y are constants. Solving the set of corresponding algebraic nonlinear equa-
tions for coefficients one easily obtains: d < 0, e = 0, sgn(a)=-sgn(c), 25d = -6a 2 ,
-y = a/5, therefore the exact solution has the form

u = ay 2 '[(25ca/(6a2 ))1/2y, 0, g3)], y = exp 7(z + zo), (6)

and contains two free parameters a and g3, and a shift constant zo. We are sorry for
misprints in this formula in the paper 1 . If the coefficients in (4) are that an additional
restriction g 3 = 0 is valid, one can conclude for roots ej of the characteristic polynomial
for p(.) that either el = e2 or e2 = e 3, and this leads to the kink solution in the form
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u =a• + ly/(Y + e)", (7)

that was obtained4 recently by means of the Painleve equation analysis.
For cubic nonlinearity it follows from (2), that u" = au' + bu3 + cu2 + du + e, and after
substitution y = expy(z + z0) it results in a more complicated form:

y 2Y2 u= (a- _ Y2)yu' + bu 3 + cu2 + du + e. (8)

Nevertheless, assuming the solution has the form:

u = y'A(p) + yfpl,(/#yk)f,, (9)

we obtain : q = 0, n = k = 1,y = a/3, m = -1,93 = 0, and the exact solution is:

u = -c/3b + yp'/[(2b)'1 2p(y, g2, 0)], (10)

if two additional conditions for coefficients in (8) are satisfied: 6(2a + 9d) = 3c 2,

c(8a' + 9d) = -81eb --? b 0.
The use of the approach is not restricted by the second order problems. For example,

following the famous book by Alwyn Scott ', containing FitzHugh-Nagumo (FHN)
model's description of the problem of nonlinear nerve pulse transmission, we consider

the coupled nonlinear equations for the unknown function u(x, t), that are presented
nowadays as

u.. - ut = Fa(u) + R, Rt = e(u + a - bR), (1

with recovery function R and cubic source term F 3 (u) = qo + qiu + q2 u2 + q3u3 .

Looking for TWS, we reduce these equations to the third order O.D.E., corresponding
to the FHN model, as follows:

u" + au" + u'(3q3u2 + 2q 2u + p) + n + mu + 8q2u2 + 8q3u3 = 0. (12)

where a = V - cb/V, b = -Eb/V, p = -tb - qi, n = qo + ca/V, m = bqj + E/V. To
find a solution we assume u = A(p) + B(p)p', p = p(z + zo) with both functions
A and B being polynomials with respect to p , and we obtain exact explicit TW
solution of FHN equation in the form u = Ap + Bp'/p, where A, B are constants now,
(A/B)2 = -2(1 - 6b2)/(3b), while the parameters of the Weierstrass function P are:

g3 = 0, A = g < 0, 2g2 = 3eb/(V2 ),

for the source function F:

q3 = -1/(2B 2 ), q2 (1 - )I(M),

q, = -11b, qo = -2AV 2 (-eb + 1/b)/(3E2 bV) - alb,

and
±2B2 = [-Vb/(54(l - cb2))11/2 - 1,

while V (wave velocity) and zo are free parameters.

The same approach can be used for fourth order O.D.E. of the form u"" = au" +
Qk(u). Following the proposition (3) with B = 0 and polynomial A(.) of order m, i.e.,
u = Am(p(z)), we obtain the condition m(k - 1) = 2, that for cubic nonlinearity k = 3
means m = 1, hence the exact solution is u = ap(-yz), while for k = 2 the equality
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m = 2 is valid, and therefore u = ap('yz) + /3p 2(-yz). The last formula provides to
obtain TWS for the Kuramoto-Sivashinsky equation.

We note in addition that to apply the approach for non-autonomous equation
P(u, u', z) = 0 one should follow the theorem by Poincare 6 :

if all critical points of the equation are unmovable, it can be reduced to the
Riccati equation for genus p = 0, while for p = 1 its solution is expressed in
terms of the Weierstrass elliptic p-function.

This approach can be useful in various physical problems, dealing with nonlinear P.D.E.
with dissipation to obtain some new exact solutions and to study their stability.
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Abstract

An unstable periodic orbit in Hamiltonian systems often possesses complex con-
jugate eigenvalues at one or more of its orbit points. This renders the stabilization
method used for controlling chaos proposed by Ott, Grebogi, and Yorke (OGY) not
directly applicable to Hamiltonian systems. By introducing the notion of stable and
unstable directions at each orbit point and incorporating such directions into a control
scheme, we extend the original OGY method to the control of Hamiltonian chaos. Our
method also includes an efficient algorithm for calculating the stable and unstable di-
rections at each point of a given trajectory. Other issues related to controlling chaos
in Hamiltonian systems are also discussed.

1. Introduction

* It is highly desirable in many situations to control chaos in nonlinear dynamical
systemsi'2 . One of the most successful methods so far is the one proposed by Ott,
Grebogi, and Yorke (the OGY method)2 . In this method, a chaotic trajectory can
be converted into a periodic one by applying small, judiciously chosen temporal per-
turbations to an accessible system parameter. The method is advantageous in several
regards. First, it does not require a priori knowledge of the system equations. A time
series from measuring one of the system's dynamical variables in conjunction with the
delay-coordinate embedding method3 is often sufficient to achieve the desired control.
Second, the method is extremely flexible in that one can select to control any of the in-
finite number of unstable periodic orbits embedded in a chaotic attractor. This method
has attracted a growing interest from a variety of scientific disciplines4-1 2. It has been
implemented experimentally to control chaotic motions in a host of physical systems,
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including a magnetic ribbon', a fluid convection system6 , a spin-wave system7, a chem-
ical system8 , an electric diode", and a laser system'". Extensions of the original method
to control high dimensional dynamical systems1 ' and to control transient chaos12 have
also been addressed.

In practical situations where chaotic systems are often situated in a noisy envi-
ronment and the orbit to be controlled is of relatively high period, it is important to
apply the parameter perturbations at each time step "1•. Such a formalism has been
proposed2 for dissipative dynamical systems. It makes use of the eigenvalues and eigen-
vectors of the Jacobian matrix evaluated at each point of the unstable periodic orbit
to be controlled. In Hamiltonian systems, however, an unstable periodic orbit typically
has complex conjugate eigenvalues on the unit circle at one or more of its orbit points.
In this case, the eigenvectors are not defined in the real plane. This fact can be illus-
trated by using the extensively studied standard map1 3 , whose dynamical properties
are believed to be typical in Hamiltonian chaotic systems,

(x.+,,y.+,) = [(x. + y.)mod(2ir) - ir, y. + psin(xn +-,y)I, (1)

where p is the control parameter. Figure 1 shows an unstable periodic orbit of period-
7 superposed on a long chaotic trajectory in the chaotic sea for p = 1. The centers
of the plus signs indicate the locations of the periodic points. The horizontal and
vertical directions at each point signify the real and imaginary axes in the complex
plane spanned by the eigenvalues. The nature of the eigenvalues is then schematically
represented by two dots plotted on the plane. For the case shown in the figure, two of
the seven orbit points have complex conjugate eigenvalues. We have also examined a
large number of other periodic orbits and found similar mixings of real and complex
conjugate eigenvalues along these orbits. In fact, one can show analytically that this
is a general feature of the standard map, which is nonhyperbolic for p = 1. Here by
"nonhyperbolic" we mean the existence of KAM surfaces in the chaotic sea.

Due to the existence of complex conjugate eigenvalues along the unstable periodic
orbit, the original OGY formula for calculating the temporal parameter perturbation
at each time step fails to apply in Hamiltonian systems. A possible remedy is to apply
such perturbations at every m-th time step, assuming the period of the orbit is m.
This approach is viable for noise-free Hamiltonian systems, but, as we have remarked
earlier, it is extremely vulnerable to external or system noise, particularly if the period
of the desired orbit is large"4 . Thus, it is imperative to devise an extension of the OGY
method to allow for parameter perturbations at each time step of the system evolution.

To achieve this we first make the following observation. Let X, be the n-th point on
a periodic trajectory. Consider a small circle around X,. Iterate the circle backward
one step. The image is typically an ellipse around the point X,-1. This indicates that
there is a direction in the neighborhood of Xn-1 along which the distance contracts
and another direction along which the distance expands. If we use such directions in
place of the eigenvectors in the original OGY formula, problems associated with com-
plex eigenvalues become nonexistent. Our numerical examples show that the resulting
control scheme works remarkably well. Thus a key question now is to find such stable
and unstable directions15 at each periodic point. In the Apgendix, we will discuss one
such algorithm originally developed for dissipative systems

Another issue not associated with controlling dissipative chaos concerns the length
of the initial chaotic transient r before a trajectory can be controlled. In dissipative
chaotic systems, for randomly chosen initial conditions, r has an exponential probability
distribution", i.e., P(T) - exp[-(r/ < r >)] for large r, where < r > is the average
length of the transient and it scales algebraically with the range of the maximum
allowable parameter perturbations2 . Thus < r > is always finite. In Hamiltonian
systems, however, the probability distribution of r is algebraic17-1 9:

P(r) -~ r-, (2)

due to the presence of KAM surfaces. Here a is the decay exponent with a value between
1 and 2. Thus the average transient time < r > in this case is infinite regardless of
the range of the parameter perturbation. Such a long transient time r may pose a
major difficulty in controlling Hamiltonian chaos if the physical system operates under
a constrained time frame. This issue is addressed to a certain degree by the recent
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Figure 1: A period-7 orbit superposed on a long chaotic trajectory initiated at (x, y) -

(0.5,0.5). The white regions {(x, y) E [-,x, 7r)} denote the KAM islands. The locations

of the periodic points are indicated by the plus signs. The horizontal and vertical lines

at each point signify the real and imaginary axes in the complex plane spanned by

the eigenvalues. If the two dots are on the horizontal axis the periodic point has real

eigenvalues. If the two dots are one on the unit circle then the point possesses complex

conjugate eigenvalues. The integers denote the order of orbit points under iterations of

the map.
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advances in an area called 'targeting' in which an initial condition is rapidly guided to
a desired location in the phase space using parameter perturbations. The algorithm
currently proposed for dissipative systems' appears to be directly applicable to cases
we consider in this paper21 . But features novel to Hamiltonian systems seem to suggest
that a more sophisticated routine be needed to form a general targeting package for
Hamiltonian problems. We will discuss some of these features in Sec. 3.

The organization of the paper is as follows. In Sec. 2, we review the basic theory
of the OGY method and derive an expression for temporal parameter perturbations
that explicitly involves the stable and unstable directions discussed earlier. In Sec. 3,
we present our numerical results for the standard map and briefly discuss the issue of
'targeting' and the effect of external noise. In Sec. 4, we present the conclusion. In the
Appendix, we describe a method to calculate the stable and unstable directions along
a trajectory (which can be either periodic or chaotic).

2. The Method of Controlling Chaos

We formulate the theory for discrete dynamical systems or maps of the form

Xi+l = F(X.,p), (3)

where Xi E R 2 , p E R is an adjustable parameter, and F is a smooth function in both
variables. We restrict the parameter perturbation to be small, i.e.,

IP- Pol < 6, (4)

where po is some nominal parameter value and 6 is a small number defining the range
of p variation. The procedure of controlling chaos works as follows. First, we choose
an unstable periodic orbit embedded in the chaotic sea that yields the best system
performance according to some criterion. We next definea small region around each of
the periodic point whose size is proportional to 6. Suppose that an initial condition
is chosen randomly in the chaotic sea. Due to ergodicity, the resulting trajectory will
enter the small region about one of components of the periodic orbit. After this takes
place, we perturb the parameter in such a way that the system is stabilized around the
chosen periodic orbit.

More specifically, assume that an unstable orbit of period-rn is Xo 1 (p) - Xo 2(p) -*

-.. X0 . (p) - Xo(,+l) (p) = X0 1 (p). The lineralized dynamics in the neighborhood
of the period-rn orbit is then

x.+ - XO(.+i)(p,) = M. [X, - X0.(P-), (5)

where M is the two-dimensional Jacobian matrix at the orbit point Xo,1 , pn = pa +
(Ap)., (Ap), :5 6. The shift in the locations of these periodic points can be written as:

Xo-(p,) - Xo,(PO) - (Ap),g,, (6)

where g.- = O9xF(.)(P)89Plp.•

In Eq. (5), the Jacobian matrix M will not be expressed in terms of .eigenvalues
and eigenvectors, because there may exist complex conjugate eigenvalues at some of
the periodic points. Instead we explore the stable and unstable directions associated
with these points. It is worthy noting that the stable and unstable directions do not
necessarily coincide with the eigenvectors'5 at a given periodic point if m 0 1. To see
how such stable and unstable directions arise at a periodic point, let us choose a small
circle of radius e around the point Xo,,. In Cartesian coordinates with the origin at
XoT!, the circle can be expressed as dx2 + dy2 = E2. After one backward iteration,
the image of the circle under F-1 in Cartesian coordinates with the origin at Xo(,,-i)
can be expressed as A(dx') 2 + B(dx')(dy') + C(dy')2 = 1 which is typically an ellipse,
where A, B and C are functions of the entries of the Jacobian matrix at Xo,. This
means that distances along the major axis of the ellipse contracts as a result of the
map. Similarly distances along the minor axis expand under F. The images of the
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major and minor axes of the ellipse at Xo(..-I) under F approximate the stable and
unstable directions at Xo,,. A systematic method of finding these stable and unstable
directions for general two-dimensional maps will be presented in the Appendix.

Let e.(,) and e,(,) denote the stable and unstable vectors at X0o, and let f.(.) and
fq(n) be the corresponding contravariant vectors such that fu(n) -e =(n) = fo(n) • e,(,) = 1
and f,(n) • e3,() = -e,() = 0. The central point of the OGY method is to require
that the iteration of a trajectory point in the small neighborhood around Xo. lies on
the stable direction at Xo(n+l), i-e.,

[x,+l - Xo(,+*(p,)1. f,(,+) = 0. (7)

Substituting Eqs. (5) and (6) into Eq. (7), we obtain the following expression for the
parameter perturbations,

{M. I X,a..+i - Xo(n+1)(p)I}" f,(,+i)
((M. g,,) - g,+1] (8)

where M is evaluated at Xon. Note that the quantities in Eq. (7) are all experimen-
tally accessible through the time-delay embedding method. In particular, the Jacobian
matrices and their inverses along a periodic orbit can be obtained by using the algo-
rithm proposed by Eckmann and Ruelle22 . It should be emphasized that the parameter
perturbations calculated from Eq. (8) apply to the system at each time step. This is
essential to minimize the effect of external noise 2,11,14 when the system is in a noisy
environment.

3. Numerical Results and Discussions

In this section we apply the method developed in Sec. 2 to control chaotic mo-
tions in the standard map. The periodic orbit we choose to stabilize is the one shown
in Fig. 1. The result is shown in Fig. 2. where the x coordinate of the trajectory point
is plotted in the vertical direction and time is plotted in the horizontal direction. The
control region near every periodic point on the period-7 trajectory is a small circle of
radius 0.01. The range of parameter perturbation is 6 = 0.01. An interesting feature
of the time series in Fig. 2 is the appearance of 'holes' in the uncontrolled trajectory.
These holes are due to the presence of KAM islands. Specifically, when the trajectory
approaches the neighborhood of some KAM islands associated with an elliptic periodic
orbit, it tends to stay near the islands for a long period of time. When this occurs, the
trajectory only wanders around the KAM islands and spares the chaotic region between
the KAM islands, thus leaving unfilled regions in the projection of the trajectory on
the x axis.

The extremely long chaotic transient (on the order of 10' in Fig. 2 and even on
the order of 106 for some other cases we have examined) before the trajectory can be
stablized is caused by the stickiness effect of KAM surfaces. The average transient time
is in fact infinite according to Eq. (2). This situation is fundamentally different from
that in the control of dissipative chaotic systems. A possible solution to this problem
is to introduce the 'targeting' technique in which a point is brought rapidly to the
desired place (the 'target') via small parameter perturbations. For the case shown in
Fig. 2, the targeting algorithm proposed for dissipative systems is directly applicable.
The reason is that the initial condition and the target are located in the same ergodic
component of the phase space separated from other components by the Cantori2 ,
fractal remains of KAM surfaces. It is not at all clear whether such a targeting method
works effectively in bringing particles from one ergodic component to another and then
to the target. Thus devising a general scheme of targeting suitable to the Hamiltonian
phase space structure remains an open question.

The influence of external noise on control can be severe. A trajectory stabilized
around a unstable periodic orbit may be occasionally 'kicked' out of the controlling
region'. The effect of noise is reduced in some cases by allowing the magnitude of the
parameter perturbation to exceed the average amplitude of the noise. Even in such
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Figure 2: The x coordinate of the trajectory versus time. After the control is turned
on the motion is stabilized around the desired unstable period-7 orbit. Notice that the
initial chaotic transient is quite long in this case (on the order of 104), as compared
with the typical initial transient in dissipative chaotic systems2. The "holes" in the
time series of the uncontrolled chaotic transient is due to the "stickiness" effect of the
KAM surfaces.
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cases, there is still a probability of the controlled trajectory being kicked out. In dissi-
pative systems, this is not such a serious problem because, after a rather short chaotic

* transient, the trajectory comes back to the desired controlling region. In Hamiltonian
systems, however, when this occurs, the trajectory will experience an extremely long
transient before it comes close to the controlling region, as discussed above. Thus the
two ingredients discussed in this paper, namely, targeting and applying parameter per-
turbation at every time step, appear to be essential to achieve satisfactory control of
chaotic motions in Hamiltonian systems.

4. Conclusion

In this paper, the original OGY method of controlling chaos is extended to Hamil-
tonian systems. The extended method allows one to apply parameter perturbations at
each time step, thus minimizing the effect of noise. Specifically, we obtain an expres-
sion for the temporal parameter perturbation using the stable and unstable directions
at each periodic point, overcoming the difficulty presented by the fact that unstable
periodic orbits in Hamiltonian systems often possess complex conjugate eigenvalues2 4 .
We also discuss the effect of KAM islands on the control, which leads us to believe that
a practical control of Hamiltonian chaos should include a general targeting algorithm
as an integral part.

Appendix: Calculating Stable and Unstable Directions

From the Jacobian matrices one can calculate the stable and unstable directions
at each orbit point, from which one obtains fu(,+l) in Eq. (8). To this end we discuss
an algorithm developed in Ref. [15]. This algorithm also works for chaotic trajectories.

To find the stable direction at a point X, we first iterate this point forward under
the map N times and get a trajectory F'(X), F2(X), ... , FN(X). Now imagine we
put a circle of arbitrarily small radius e at the point FN(X). If we iterate this circle
backward once, the circle will become an ellipse at the point F N-i(X) with the major
axis along the stable direction of the point FN-I (X). We continue iterating this ellipse
backwards, while at the same time keeping the ellipse's major axis of order f via certain
normalization procedures. When we iterate the ellipse all the way back to the point X,
the ellipse becomes very thin with its major axis along the stable direction at point X.

In practice, instead of using a small circle, we take a unit vector at the point FN(X)
since the Jacobian matrix of the inverse map F-1 rotates a vector in the tangent space
of F towards the stable direction. Thus, we iterate a unit vector backward to point X
by multiplying by the Jacobian matrix of the inverse map at each point on the already
existing orbit. We normalize the vector after each multiplication to the unit length.
For sufficiently large N, the unit vector we get at point X is a good approximation
of the stable direction at X. A key point in the calculation is that we do not actually
calculate the inverse Jacobian matrix along the trajectory by iterating the point FN(X)
backwards using the inverse map F- 1 . The reason is that if we do so, the trajectory
will usually diverge from the original trajectory FN(X), F N-I(X), ... , FV(X) after
only a few backward interations. What we do is to store the inverse Jacobian matrix
at every point of the orbit F'(X) (i = 1,... , N) when we iterate forward the point X
beforehand.

Similarly, to find the unstable direction at point X on the chaotic set, we first
iterate X backward under the inverse map N times to get a backward orbit F-j(X)
with j = N,... , 1. We then choose a unit vector at point F-N(X) and iterate this unit
vector forward to point X by multiplying by the Jacobian matrix of the map N times
since the Jacobian matrix of the forward map rotates a vector towards the unstable
direction. We normalize the vector to the unit length at each step. The final vector at
point X is a good approximation of the unstable direction at that point if N is large
enough. Again, to avoid divergence from the original trajectory, we do not actually
iterate the inverse map. What we do in this case is to choose X to be the end point of
a forward orbit, all the points before X are the inverse images of X and we store the
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Jacobian matrix of forward map at those points.
The method so described is very efficient. Particularly, it converges fast. For

N = 20, the error between the calculated and real stable (or unstable) directions is
on the order of 10`1 for chaotic trajectories in the H6non map"5 . For the standard
map we find similar rate of convergence.
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DETERMINISTIC DISORDER

IN TWO-DIMENSIONAL MEDIA

Mikhail I. Rabinovich and Anatoly L. Fabrikant

Institute of Applied Physics
Russian Academy of Science
603600 Nizhny Novgorod, Russia

INTRODUCTION

The idea that random distributions of physically meaningful fields in space may be
deterministically generated was put forth considerably after the discovery of dynamical
chaos.1 '2 ,'3 4 Such investigations, however, could have been expected much earlier, in the
beginning of the seventies, because of a very close analogy between the time series gen-
erated by dynamical systems and one-dimensional spatial field distributions described
by ordinary differential equations in which spatial coordinate plays the part of time.

Radically new problems arise in the analysis of spatial chaos even in a one-dimen-
sional case. They are, in the first place, the evolutionary origin of disorder (i.e. its birth
out of regular initial distribution), stability of disorder to small perturbations (detection
among different statical irregular distributions of stable, metastable and unstable ones),
and, finally, grouping of various field distributions according to their degree of complex-
ity. The latter is not an easy task because nearly identical spatial correlation functions
or Fourier spectra may correspond to spatial distributions of different complexities.

Irregular spatial field distributions are now being broadly investigated in various
branches of micro- and macrophysics. Aspects of interest are, for example, topological
disorder of defects in a crystal lattice," chaotic distribution of field intensity across a
Fabry-Perot resonator at large Fresnel numbers in nonlinear optics,' the distribution
of vertical velocity component in a horizontal layer of fluid in Rayleigh-B~nard convec-
tion,7 density distribution of matter in Galaxy, etc. The universal language of nonlinear
dynamics is a useful tool in understanding the origin of spatial disorder in different fields
of physics. Thus, experience gained in the investigation of turbulence, for instance, may
be employed in the theory of superconductivity.

Future Directions of Nonlusar Dynamics in Physical and Biolog•ial Systems
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Figure 1: Disorder of bubbles in soapy foam.

This paper is concerned, primarily, with ideas and results related to analysis of
two-dimensional spatial field distributions. The architecture of the paper is as follows.
Deterministically generated disorder of two-dimensional fields is defined in Section 2 in
which a method for the diagnostics of finite-dimensional spatial chaos using analysis of
a translational dynamical system with two times is also considered. Typical scenarios
of the birth of finite-dimensional spatial disorder (the "crystal - quasicrystal - disorder"
transitions, as well as transitions through defect formation and intermittency) are anal-
ysed in Section 3. The evolution of regular yield states to disorder through the birth of
localized structures, their random pinning and the resulting stochastic spatial patterns
is investigated in Section 4. Section 5 is devoted to perspectives in the development of
ideas on deterministic disorder;, diagnostics of fields of different physical origins (wind
waves, in particular) using a method for the calculation of spatial correlation dimension
is also considered.

SPATIAL CORRELATION DIMENSION OF A SNAPSHOT

Can a given spatial disorder such as, for example, the one depicted in Fig. 1 be
deterministically generated? This question may be answered using the processing of
spatial distributions of multidimensional fields that was proposed in.! This method is
essentially as follows.

We introduce the notion of phase space for a two-dimensional space series u(x1 , y,)
(like in the case of one-dimensional time series). To this end, we make the snapshot
of the two-dimensional space series u(x,y) discrete, i.e. we represent it as a grid
with the zi,yi-nodes and consider the values of the space series for each of them:
•d = u(z, ,yi). Each node has two indices, it has neighbours on the left and on
the right, as well as on top and at the bottom. We introduce a discrete final clus-
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ter A-) ={(u,4 ), = K,..., K+ m-l1, jL,..., L+rmn- 1)that isdetermnined by
(m x m) points. By shifting this cluster (which is now not a Bet of numbers like in a
one-dimensional case but a square matrix) along the space series we obtain a trajectory
in a matrix space that can also be called phase space.

Using this approach, like for time series, we can determine correlation dimenibion
and all the characteristics that were formerly used for the description of stochastic sets
in an ordinary phase space, we mean entropy, Lyapunov exponents, etc. If the stochastic
set determined in this fashion has a finite dimension, then the snapshot of interest may
be referred to as finite-dimensional disorder.

This program may be implemented using a formal mathematical language. Con-
sider a set of continuous (vector) functions u~x), x E Rd, u E RP employing conventional
procedures of summation and scaling up. Introducing into this set a distance we obtain
a metric space B that will be referred to as the phase space of the system. To each d-
dimensional vector a = (Cill... I atd) E Rd we associate the translation map T* B --+ B
that is determined by the expression Tau(z) = u(z + a). Thus we determine the action
of the group R' on B or, in other words, we have a dynamical system with d times that
will be referred to as a translational dynamical system.

If the process under study is such that knowing the initial state (initial field dis-
tribution) one can unambiguously determine the subsequent states at any moment of
time, then a semigroup of evolution operators {St~q~o also acts on B, i.e. an evolu-
tional dynamical system is determined as well. The behaviour of the trajectories of
translational and evolutional dynamical systems in the common phase space B gives a
full mathematical description of the spatio-temporal properties of the nonequilibrium.
medium of interest.

Generalizing the algorithms presented in,' we can propose the algorithms for the
calculation of correlation and pointwise dimensions of the snapshots. Let us take a
two-dimensional snapshot us in the form of an array (Uis,, i, j E Z4). In practice, the
array, naturally, has a limited size: i < N1, j •!ý N2, but N, and N2 are supposed to
be sufficiently large numbers. For each integer m > 1 we can construct from the array

{u~~j)(rnm~mtries:A,' = {(Uk,g), k =K,..., K+m- 1, 1 =L,..., L+n- i}.
Let us define the correlation integral in the form

_ R(-)(6

- (N1 - rn)(N 2 - M)]2'(1

R(-) (e) = #{((K, L), (K,WL')) : dist (A(-), A-.) e)c, (2)

where #(E) is the number of elements in the set E. Then, it can be shown that
for sufficiently small e, the log C(n) (c)/ loge ratio will be approximately equal to the
correlation dimension D,. of the two-dimensional snapshot in rn-dimensional embedding
space.

Following1 0 we will estimate the minimal size of the array (Uij)N,.N, that is needed
for correct calculation of the dimension on the interval [l1,692 1. Because

log-102 C(m)(eh) -log 2 c(,,-)(e)(3

where c(-)fe) Ž .c(-)(e)! <1, then, msuming e" = 2k r', we will estimate the

dimension:
DA < log2(N1 . N:) (4)
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Figure 2: Transverse defects against the background of rolls in a liquid crystal.

Thus, when determining the correlation dimension of a multidimensional snapshot one
must bear in mind that the number of discretization points along each time coordinate
may be much smaller than in the case of one-dimensional time.

SCENARIOS OF THE BIRTH OF FINITE-DIMENSIONAL
SPATIAL DISORDER

Because spatial disorder may be considered only within large-box problems we will

analyse only the two groups of physical experiments which meet this requirement. We

will take Faraday ripples on the surface of a parametrically excited horizontal layer of
liquid and Bdnard-Marangoni convection with large aspect ratio.

One might think that Nature has designed these flows purposefully for the inves-
tigation of spatial disorder. In both cases, static spatial structures are born near the
threshold of spontaneous symmetry breaking. The difference is that they are actually
static ones in the case of convection, while for capillary ripples the entire picture oscil-
lates with a frequency equal to half-frequency of gravity field oscillations. The structures
in the latter case are static if they are observed stroboscopically with appropriate period.
Note that capillary ripples are of particular interest to experimenters because they can
use an additional control parameter: the frequency of parametrically excited capillary
waves. As frequency changes, resonant interaction between excited waves and, conse-
quently, the behaviour of spatial structures change too. Besides, spatial structures may
appear according to different scenarios depending on the parameters.

Modulation Disorder

Examples of modulation disorder are transverse chaotic modulation against the
background of a regular lattice of Faraday ripples 1 and irregular sequence of transverse
defects against the background of rolls (see Fig. 2) in magnetohydrodynamic convection
in a liquid crystal."2 A single defect of this type may look like two identical lattices of
rolls, that fill the upper and lower half-spaces and are displaced half a period relative
to one another. These transverse defects are, as a rule, repeated irregularly along the
y-axis.

The disorder of transverse defects reminds the disorder of localized structures that
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was discused in.1 3 The similarity will be even more complete if we filter the ini-
tial periodic lattice. This can be done by representing the initial field in the form
u(m, y, t) = A(y, t)edn + c.c. (the lattice period is supposed to be equal to 2r). Substitut-
ing this solution into initial equations we obtain a fourth-order Newell-Whitehead-Sigel
(NWS) equation for complex amplitude along y:

aA a4A
W = A +IYA* -W- A I A I2  (5)

When -y $ o, this equation takes into account periodic (with the period v) inhomogeneity
of the medium. In the case of convection, this is, for example, a periodic inhomogeneous
temperature distribution at the lower boundary of the layer.

U h=0.34 h=O. 14

1500 2000 2500
X

Figure 3: Disorder of solitons in a one-dimensional analog of (7).

The solutions of (5) that describe stationary jumps of the phase A(y) by 7r corre-
spond to defects. The absolute value of A(y) then tends to constant Ao as y --* ±oo.
Equation (5) is also a gradient model. Therefore all statical regimes that are established
in our system as t -* oo (the ones with defects - jumps - including) must be described
by ordinary differential equation

AI, - A(1- I A 12) + "yA" = 0 (6)

We can show that there exists in the phase space of this dynamical system a countable
set of homoclinic trajectories which correspond to localized structures of phase and am-
plitude.

Single defects correspond only to the simplest homoclinic trajectory in the phase
space of (6). This equation must describe, besides simplest localized states, more com-
plicated combinations of "solitons", including their chaotic s&quences like the ones pre-
sented in Fig. 3.
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Figure 4: Disorder of defects in capillary ripples.

Note that such chaotic distributions of transverse defects also exist in the absence
of periodic inhomogeneity along z, i.e. when -y = 0. They agree qualitatively with thc

picture observed in experiments (see Fig. 2).

Finite-Dlmensional Topological Disorder

As supercriticality (the Rayleigh or Marangoni number in convection, a relative
amplitude of the oscillating portion of gravity field in Faraday ripples) increases, the
spatial picture of the flow in the form of a square or a hexagonal lattice or a simple
one-dimensional lattice of rolls loses its stability, as a rule, due to the birth of defects'
(Fig. 4). The increase in supercriticality results in the growth of the number of de-
fects randomly placed in the lattice and, thus, spatial disorder emerges. Is this disorder
deterministically generated? The answer to this question can be found by calculating
the spatial correlation dimension of the snapshot. The results are presented in Fig 5.
One can see that the dimension is, actually, finite! The dimension grows with increas-
ing supercriticality, which confirms our intuitive ideas that the development of spatial
disorder implies the birth of new independent spatial excitations. To put it in other
words, spatial correlation dimension may be used as a qualitative characteristic of the
complexity of inhomogeneous distribution of a two-dimensional field.

We would like to add to this that in the case of capillary ripples a dynamical system
capable of generating snapshots like the ones depicted in Fig. 4 may be obtained from
initial equations of motion for liquid surface, given that spatial interaction of counter-
propagating capillary waves with unfixed transverse structure are taken into account
(see also14). Apparently, it would be interesting to calculate the correlation dimension
of computer snapshots and compare the obtained dependence of D, on supercriticality
with the one given in Fig. 5b.

Capillary Quasicrystals

It was only yesterday that stable quasicrystal structures appeared to be inher-

1Using a spectral language one can consider many defects of two-dimensional fields as a superposition
of several spatial modes having close wave numbers.
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ent solely in objects of microphysics.' However quite recently there have appeared
remarkable experiments in which macro-quasicrystals have been observed in capillary
ripples.reIT

The structure of the patterns observed on the surface of a parametrically excited
liquid layer at small supercriticality depends on the type of nonlinearity and on the
extent of dissipation. By varying the amplitude of external oscillating field and its
frequency one can control these properties of the medium, even if the liquid remains
unchanged. At sufficiently strong dissipation, only simple regular lattices with square
cells (given small square field nonlinearity) or hexagonal cells (when this nonlinearity is
strong enough) are observed on the surface. A square lattice is a superposition of two
mutually orthogonal standing waves having equal absolute values of the wave number k
that is determined by dispersion law for capillary ripples: gak' s OfP2 (here fp is the
frequency of oscillating gravity field, a stands for capillary length, andj is acceleration
of gravity). All standing or travelling waves with the wave numbers I k J= k that make

a to -
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Figure 5: a. Correlation integral corresponding to Fig. 4. b. Correlation dimension of
snapshots of capillary ripples as a function of supercriticality.

an arbitrary angle with the observed patterns have, in principle, equivalent conditions
for the excitation in a linear approximation. At a nonlinear stage, however, they are
suppressed due to mode competition. In view of equal potentialities of all waves having
equal absolute values of k, the orientation of the established lattice depends only on
random initial conditions.

For sufficiently strong nonlinearity, the capillary waves with k1,2,3 (I /i.,2 J= k)
* making an angle of 600 relative to one another are coupled resonantly. The resonant

condition, k, + k2 = k4, is met in this case, which guarantees the onset of a hexagonal
lattice.

As supercriticality increases, the effect of competition becomes less significant and
the picture gets more complicated: now several (> 2) standing waves, the angle between
which is determined by the condition of interaction minimum, may steadily co-exist in
the regime established. We would like to remind our reader that, for given k, identical
cells may fill the plane only if these cells are squares or hexagons. Consequently, only
four or six excited travelling waves produce a crystal lattice of capillary ripples. The
excitation of eight (or four standing) waves gives a quasicrystal structurel Cristiansen
and his co-authors1' observed such a quasicrystal structure ( see Fig. 6).

Stable observation of capillary quasicrystals enables one to reveal, as the control
parameter is changed, the "quasicrystal - spatial disorder" transition. Relevant exper-
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Figure 6: Capillary quasicrystals formed by four standing waves.

iments are now being carried out by our group (Nizhny Novgorod) employing as an
additional parameter periodicity of the bottom. Note that a similar transition, "incom-
mensurability - spatial chaos", is well known for the case of one spatial coordinate. The
destruction of an open winding on a torus as a result of additional forcing and formation
of a stochastic set corresponds to such a transition in the phase space of a dynamical
system (see also7).

RANDOM PINNING OF LOCALIZED STRUCTURES

While discussing possible scenarios of the birth of spatial disorder we were concerned
only with fairly small supercriticality and were interested, primarily, in the destruction
of "weakly nonlinear lattices". In the case of supercritical bifurcations, when trivial
equilibrium is unstable, the variation of the control parameter or in time leads to suc-
cessive formation of new, nearly harmonic, spatial excitations. The situation is usually
different in the case of subcritical bifurcations. Elementary excitations are stongly non-
linear, which means, if we employ a spectral language, that they contain a great number
of spatial harmonics. The most significant example of such strongly nonlinear excita-
tions are localized states of a two-dimensional field. The interaction of such excitations
may give rise to both a regular lattice and topological disorder, like that observed in
solids. We will consider the onset of such a disorder in time assuming nearly harmonic
conditions."'

Consider a generalized Swift-Hohenberg equation that describes subcritical bifur-
cation:

=-U +P - u' - (4+ VT)U (7)

The parameter P determines the instability threshold (only disturbances of finite ampli-
tude u > uo, where uo = [I - (#'/4 - (I + 4))'/'] and L/ico is the characteristic spatial
scale of the system, increase). Such a model describes many bistable systems.
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In order to describe the transformation of spatial field distribution we analyse the
spatial spectrum of space series and the evolution of spatial entropy in time in a one-
dimensional case. We show that a nearly harmonic initial field distribution transforms
in the course of time into a lattice of solitons that move apart, due to instability, at a
random distance from one another and stick at potential minima forming, as t -* oo,
a static disordered lattice. The statistical characteristics of this lattice depend on the
period of initial field distribution. If the initial distribution has different periods in
different portions, then, as t -* 0o, an inhomogeneous static regime with "different"
disorder is established for which piece-wise constant dependence of entropy on coordi-
nate is typical. We would like to note that the mechanism responsible for the birth of
spatial chaos due to random pinning of defects in an oscillating potential of one another
was proposed within a one-dimensional model with superctitical bifurcation by Coullet,
Elphick and Repaux.'

We will be interested in the time evolution of spatial distributions of a two-di-
mensional "field" that is described by Eq. (7) that may be represented in a gradient
form 0.% 6F (8)

where F = 'r[IU2- -U3+ 1L+ !((i4 + V')u)2]df'is a free energy functional. Only static

attractors may exist in the phase space of this system because F may only decrease
along the trajectory A = f f(ui) 2dfr < 0. Periodic, quasiperiodic or chaotic spatial
distributions may correspond to these attractors. The number of attractors may, in
principle, be arbitrary great. Indeed, according to (7) all static solutions that are
established as t -- 0o meet a translational dynamical system (4 + V2)2 u + f(u) = 0,
where f (u) = fu' + u".

Representing initial periodic state of the field as a point in the phase space of the
gradient system of interest, we can formulate the problem of the birth of disorder in
the form of a simple question: Is this point contained in the attraction basin of the
attractor corresponding to disordered field distribution as t --i oo? Physically, however,
this formulation of the problem does not sound natural enough. We must be concerned
with a set of close initial field distributions rather than with one particular distribution.
An initial phase volume with a charactertic size c <: 1 and not a point corresponds to
such a set in phase space. Then the question will have a quite different formulation:
Will an irregular state of the field the statistical characteristics of which depend only
on the period of initial distribution and are independent of e (with c --. 0 including) set
in as t -- o0o? Numerical experiment must be performed along these lines.

Equation (7) was solved in our numerical experiment employing a spectral method
for N = 128 x 128 harmonics with boundary conditions u(0) = u(1) for I = 100, 1Co 1
and P = 2.9. We took a nearly harmonic initial field distribution

u~x) = asinK.xsinK,y + ef(z, y), (9)

where r <z a and f(x, y) is a random function.
The wave number K of harmonic distribution was chosen so that a periodic lattice

of localized structures emerging from it when c = 0 should correspond to the local
maximum of free energy in Eq. (7), i.e. that such a lattice should be unstable relative to
small disturbances. Small irregular component e <c I acts in this case only as a "trigger"
to initiate instability. Then, a solution like the one shown in Fig. 7 is established as
t -- o for a = 1.8 and e = 0.3 - 0.01.

The numerical experiment illustrates the birth of spatial chaos whose properties
are universal in that they do not depend on statistical characteristics of fe(z, y) but,
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instead, are determined by the dynamical system itself.
The time dependence of Koinogorov-Sinai entropy calculated for one-dimensional

space series shows that entropy grows monotonically from zero and tends to a constant
when t --+ oo. The increase of entropy and, eventually, its asymptotic form indicate that
static disorder sets in.

Numerical experiment demonstrated that finite-dimensional disorder is formed in
two stages. At the first (fast) stage of evolution, the initial field distribution transforms
in time t < P into a lattice of solitons that are slightly shifted (for small e) with respect
to equidistant arrangement. If we have a nearly periodic initial distribution, the soliton
lattice is nearly periodic too. The medium remembers initial conditions at this stage of
evolution. As t increases (t > P), the solitons slowly shift relative to one another and
the initial conditions are no longer remembered if the lattice is unstable.

Results of computer experiment may be interpreted pictorially within the following
model. For not too short distances between the neighbouring solitons (on the order of
their characteristic size or larger), the asymptotic method enables us to describe the
soliton motion as the dynamics of a chain of particles with specific interaction potential
that is determined by the structure of the "tail" of localized structures:

M d , Md =-Yj (10)

Here z,- and mi are coordinates of the center of the i,j-th soliton, M = f(Vu(°))2dr is
mobility of the soliton having the structure u(°) (x), and ui, is the potential produced by
all solitons except the ij-th one at the point zi:

!Uqj= u rn,•' e- Jtn cos(P .R" + r~o), (11)

m~n

where v, = Fs , p = ImiAr4 and V is a numerical constant,

R-^= Oxz. 1 - ZO,~ + (Yi. - pi)2

and summation takes into account only interaction with nearest neighbours.
The equilibrium states of system (10) are described by periodic, quasiperiodic ad

stochastic solutions which enclose either the entire plane or part of it. Rectangular and
hexagonal lattices of solitons with arbitrary lattice constants correspond to simplest
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Figure 8: Kohmogorov-Sinai entropy versus a period of initial perturbation - sin kz in one-
dimensional analog.

periodic solutions. Lattices in which the distance between porticles corresponds to min-
ima (or maxima) of the pair interaction potential (11) have highest (lowest) stability.
Note that simplest stable stochastic solutions that are contained within (1O)-(11) may
be constructed out of stable periodic lattices by omitting in the lattice an arbitrary
amount of particles.

What happens if the period of initial distribution is such that the emerging periodic
structure is unstable? Arbitrary disturbance as t --+ oo may lead either to regular peri-
odic and quasiperiodic distribution of "particles" or to chaotic distribution of particles
- solitons.

It follows from analysis of system (7) that different unstable soliton lattices and,
consequently, different established distributions must correspond to initial distributions
with different periods - the effect of multistability. Because of instability, the neighbour-
ing solitons may either move apart by "one minimum7 (one oscillation of a soliton tail)
or move towards one another by the same "unit length". Then it appears obvious that
the degree of disorder may only decrease with increasing period of initial distribution!
This guess was proved completely in a computer experiment (Fig. 8).

APPLICATIONS AND PERSPECTIVES

The considered theory of deterministic spatial disorder of multidimensional fields
is now at its most intriguing stage of development. Very little has been done yet but
perspectives seem to be highly optimistic. Therefore we will mention only a few prob-
lems, picked out almost at random, to demonstrate the resources and potentialites of
this fascinating and extremely attractive branch of science.

1. Computer and laboratory experiments show that the degree of disorder of a two-
dimensional field increases with the growing number of localized states (parti-
cles, defects, etc.). Apparently, if these states do not interact with one another,
the dimension D, will be infinite, like for complete thermodynamical disorder.
There arises a question : What kinds of particle interactions transform infinite-
dimensional disorder into finite-dimensional one? Finally, is there any relation
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between thermodynamical and dynamical characteristics for finite-dimensional dis-
order?

2. Is it possible to reconstruct the properties of deterministic chaos for large-box
problems by measuring the dimension of a time series at one point? The answer is
"yes", but the time series must be very long, which makes the problem unsolvable,
in fact. A natural impulse in this situation is to use several time series measured at
different points in space. The algorithm for calculation of the correlation dimension
of time series can be readily generalized for this problem. However, there arises
a new task: to choose the points at which the time series should be measured.
Apparently, solution of this problem is extremely important for the prognosis of
spatial fields, for example, for weather prediction.

3. Up to now, we have considered an ideal situation when finite-dimensional disorder
exists "all by itself", i.e. without uncontrolled spatial inhomogeneities. Whereas
real snapshots always contain different noises of unknown origin that have a rather
broad Fourier spectrum. The noises may be produced by technical details of
diagnostics, as a result of signal transmission through communication channel,
by inhomogeneity of photo materials, etc. It is an extremely difficult task to
detect finite-dimensional disorder against the background of spatial noise using
traditional statistical methods. However, the experience gained with time series
shows that use of even simplest forms of "dynamical" processing of snapshots
(calculation of D,, spatial entropy, etc.) makes the problem sound a little more
optimistic.'8

4. A rather broad spectrum of propagating waves, including the ones with a nearly
saturation amplitude, is typical for real wave fields that exist in the Nature (in
atmosphere, in the ocean, in space plasma, and so on). With the excess over the
saturation amplitude, wave dissipation caused by breaking (i.e. by the forma-
tion of small-scale, most often turbulent, perturbations on wave crests) increases
sharply. The interaction of propagating waves is then described in a weakly non-
linear approximation. Whereas breaking is a strongly nonlinear process and the
resulting turbulence may be considered as a random field. This picture of tur-
bulence is usually observed for internal gravity waves propagating in atmosphere
with density decaying exponentially along the vertical" or for wind waves at suf-
ficiently strong wind.20

It is almost impossible to distinguish the wave and turbulent components
using traditional methods (except the cases when the components have strongly
differing space or time scales). Besides, researchers usually have at their disposal
only snapshots of spatial fields while phase velocities of different spectral com-
ponents are unknown. We believe therefore that a method for 4ra.• 'ation of the
spatial dimension of snapshots may be a useful tool that will ena.il one to sepa-
rate small-scale structures related to propagating waves from a chaotic component
of higher dimension.
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Suppose one wants to look at a weak periodic signal within a random noise: a way to
improve the Signal to Noise Ratio (SNR) is to use a lock-in amplifier, but the frequency of
the periodic component must be known to achieve a high amplification. A different method is
offered by the mechanism of Stochastic Resonance (SR)1.2. SR is a mechanism which uses a
nonlinear device (a bistable system could be an example, but other possibilities are known3)
to enhance the SNR even if the frequency of the periodic modulation is not exactly known.
Most intriguing and counterintuitive, there exists a range of noise intensities for which the
SNR increases as the noise intensity is increased. The effect is shown in Fig. 1 - ere (left
hand side) we send a periodic signal plus a random term to a nonlinear filtering device
(middle, a bistable electronic circuit) and we obtain a strong filtered signal (right hand side,
jagged line) at the driving frequency; by comparison, on the right hand side we report with a
dashed line the periodic component buried in the noisy input signal, amplified by a factor 10.

It is very simple to understand the physical mechanism of SR. Suppose one has a
filter: this filter will be described by its transfer function (or susceptibility) X(Q). If the form
of the transfer function is known, the behaviour of the filter will be known too. For systems

I * *
S. ..> -----> '

random + periodic input nonlinear filtering dcvice filtered signal

Figure 1. Schematic view of the SR phenomenon (see text for more delails).
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in thermal equilibrium (at a temperature T) it is straightforward to derive X(Q). Using the
Linear Response Theory4.5 one gets

Re j(-)=2 dxQX) X2 1 An = )R T f) X2 T- Q2z T
TJ 0  x2fl 2  T(1)

where Q(a) is the spectral density of fluctuations in the system. If the external forcing has an
amplitude A and its frequency is o, the SNR can be written as

4 Qo) (2)

and it is clear from the above equations that we only need to know Q(W). Very roughly, a
quick power counting of T in Eqs 1 and 2 shows that we may expect SR if at the driving
frequency Q(Q) depends more than quadratically on the temperature T.

A typical SNR vs T plot for a given driving frequency will look like Fig. 2.We show
next on Fig. 3 the SNR enhancement as measured in a electronic circuit4.5 ; crosses are the
theoretical predictions using Eq. (1) (from measured Q(D)), squares are the SNR's measured

10-

8- This increase in the SNR
is the stochastic

resonance hcnomenon

z
4-

2-

0-

0.0 0.2 0.4 0.6 0.8 1.0 1.2

T (arb. units)

Figure 2. The SNR ratio vs. T, showing the SR phenomenon.
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6- 0+ 
++

60 + + +

z 0 0V') 4- ]-+

+

0-

0.0 0.2 0.4 0.6 0.8 1.0

D/AV
Figure 3. SNR (squares) measured in a bistable system vs noise intensity (in scaled units, see text); crosses

are theoretical predictions.
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in the circuit. Note that both in Fig.2 and Fig. 3 the fact that the maximum of the SNR vs. T
is very broad implies that the SR mechanism should work even if the frequency of the
driving forcing is not precisely known6. A typical electronic bistable system, used to study
SR, could be

S= 
x -x 3 + f t) + A cos wt (3)

where f(t) is a gaussian random noise, delta correlated arnd of intensity D (which plays the
role of the temperature T). Eq. (3) describes a symmetric bistable system, the simplest model
where SR can be found; the term Acosan represents the weak external periodic force, and we
look at the response of the variable x. Notice that the noise intensity has been scaled on units
of the potential barrier between the two minima (AV=0.25 for the model of Eq. (3)), because
this is the main quantity which determines the onset of SR in bistable systems.

1.0-0

0.8-

e0.6-

0.4-

0.2-

0.0-

0.0 0.2 0.4 ()6 0.8 1.0 1.2

D/A V

Figure 4. Phase lag between average signal and periodic forcing (symbols refer to two different amplitudes
of the periodic forcing) vs noise intensity. The full line is the theoretical prediction.

As clear from Eqs. 1, the response can have an imaginary part. We expect then that
the system should display a phase shift between external forcing and average response, and
that this phase shift should not be function of A7. Fig. 4 proves that this conjecture is true:
we plot the phase shift (-o, different symbols correspond to different A's) between response
and external driving for the model of Eq. (3), compared with the theoretical prediction (solid
line). Contrary to the case of Fig. 3, here Q(a) has been derived theoretically from first
principles, not from a simulation. The agreement between simulations and theory is
remarkable.

0.4

0.2-

I. 0.0-
,+

-').2 -

-0).4 -

0 1X0 200 300 4(0)x10

Time (arb. units)

Figure 5. Expected response in the very nonlinear regime
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Finally, it is possible to investigate theoretically the the SR phenomenon even in a
(very) nonlinear regime4,8. In this case the response of the system is no longer sinusoidal, as
shown on Fig. 5. The idea is to use an expansion of the response in terms of Bessel
functions, given that for a bistable system the dynamics (and hence Q(Qt)) is dominated by an
activation process (across the potential barrier) of exponential form.

In Fig. 6 we show a typical :ower spectral density in the nonlinear regime, obtained
from a numerical simulation of Eq. (3) in the appropriate range of parameters. Satellite peaks
at frequencies odd multiples of the driving frequency o) are visible (in particular •he one at
3(o). In the inset we report the theoretical predictions for the first three harmonics (triangles)
and the result of the numerical simulation (squares with error bars). We regard the agreement
as very satisfying.

10000 "

S10.10

--' 1000 5610

1000
K 1 2 3 4 .5 6O

0 2 4 6 8 10 12 14 16

Frequency (in units of the driving frequency)

Figure 6. Measured spectral densities in the nonlinear regime. Inset: comparison between experiment
(triangles) and theory (squares).
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Aperiodic excitation of a dynamical system can be advantageous in many practical
systems, for example it can reduce fatigue of materials in number of mechanical systems
(gear boxes are the classical systems of this type). Sensitive dependence on initial
conditions which is characteristic for all chaotic systems makes that the response trajectory
is not only aperiodic but unpredictable as well. That is why it is difficult to use chaotic
systems in practice. Recently the problem of controlling chaos i.e., to convert the chaotic
behaviour found in many physical s'stems to a periodic time dependence or aperiodicity
which is predictable, has attracted great interest [1-61. The method of Ott, Grebogi and
Yorke [1] (OGY) has the unique feature that it enables one to select predetermined
time-periodic behaviour by making only small time-dependent perturbations. They show
that permanent chaos can always be depressed by stabilizing one of many periodic orbits
embedded in the chaotic attractor. The idea is to start with any initial condition, wait until
the trajectory falls into a target region around the desired periodic orbit and then apply
feedback control. The applications of OGY method to stabilized higher periodic orbits in
chaotic diode resonator have been demonstrated by Hunt [2]. A modification of this method
to control chaos using time delay coordinates has been presented by Nitsche and Dressier
[3]. Besides the described above feedback methods it is possible to stabilize periodic orbits
by nonfeedback methods [4,5]. In this note we show two techniques of controlling chaos
which allow to generate aperiodic trajectory which is predictable by a small change of
system parameters.

The first method is applicable to the systems which behaviour depends on a control
parameter - c in such a way that they have a chaotic attractor for one value of c , let's say
cl and strange repeller together with periodic attractor for the other value of c - c2. Systems
with strange repeller exhibit transient chaos [6]. Trajectories started from randomly chosen
initial points then approach the attractor with probability one. Before reaching it, however,
they might come close to the strange repeller and stay in its vicinity for shorter or longer
time. Long lived chaotic transients are often present around crisis configurations [6], at
parameters values just beyond the disappearance of the chaotic attractor. It is worth
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mentioning that systems with fractal basin boundaries are also accompanied by transient
chaos since such boundaries are, in general the stable manifolds of chaotic repeller.
Computation of transient Lyapunov exponents for the systems with chaotic repellers often
shows such a property that their values become nonpositive far before the transient died
i.e. before trajectory reaches attractor [7,81.

t, t2 t3

Figure I Behaviour of nearby trajectories.

The main idea of our method is described in Figure 1. Let's consider two
trajectories which start from nearby initial conditions A' and A" which lie on or close to
a strange chaotic attractor. For to< t < t, these trajectories represent evolution of the
system for a value of control parameter c =c, and for t, < t < t3 the evolution is shown for
control parameter c=c2. In the first time interval we observe exponential divergence of
trajectories described by positive Lyapunov exponent - X(t) >0. At time t=t- we are
changing a value of control parameter from c, to c2 . For a new value of control parameter
our system has a strange repeller and we observe first a further divergence of trajectories
and a positive transient Lyapunov exponent X(t)> 0 for t, < t < t2 . At time t2 a transient
Lyapunov exponent changes sign from positive to negative and for h < t < t3 we observe
a convergence of trajectories. At time t3 we are changing a value of control parameter to
c, again, etc. If t3 is chosen in such a way that the period of time t3 - t2 is not sufficient
for a system to reach periodic attractor and

t2 t

fx(t)dt = fx(t)dt
to h

then we do not observe divergence of trajectories in time. As a part of trajectory evolves
on the strange chaotic attractor the switches between c, and c2 will take place in different
points of phase space so the trajectory is aperiodic (not t3-periodic).

As an example of our method let us consider:

R + ax - (1 + c-cos(wt))x + bx = 0 (2)

whe- a, b, c and w are constant. In this note we took a=0.1, b=l, wo=I and c as a
control parameter. We took two values of c: c1=0.35 and c2=0.34. For c, the behaviour
of the system is chaotic and for c2 the system is characterized by above described transients
[8]. In numerical investigations t, = 101, and t3=3• 105T,, T, = 2 7/W have been taken and
we considered the behaviour of a system:

158



x + ax - (I + c(t)cos(wt))x + bx = 0 (3)

where c(t)=c, for to<t<t, and c(t)=c3 for tl<t<t3 . Generally T, and T2 =t3 are
incommensurate so eq.(3) has four-dimensional phase-space (x, x, wt, (2 T/t3)t) and can
have strange nonchaotic attractor. The value of the largest Lyapunov exponent averaged
over time T2 is negative and close to -0.001 so we do not observe exponential divergence
of trajectories in time. This result shows that applying our control procedure we manage
to build aperiodic trajectory which is predictable in that sense that nearby trajectories do
not diverge exponentially as it is shown in Figure 2. Figure 2 presents the distance
x'(t+nT2 ) - x"(t+nT2 ) ; where n = 1,2,..., x' is a trajectory for initial conditions
x(0)=0.1, x(0)=0 and x" is a trajectory for x(0)=0.101 , x(0)=0.

xv(nT1 )-xr(nT,)
0.1-

0.05-

0-

0 100 200 300

n

Figure 2 Distance between nearby trajectories of eq.(3) versus time.

The second method allows to convert the unknown chaotic trajectory to a desired
aperiodic trajectory. The idea of this method is to perturb one of the system parameters,
for example c in eq.(2), as:

t = M(x-x.)-(,-x,.)) (4)

where (x,, +,) is a known aperiodic trajectory (it could come from chaotic system), r is the
stiffness of the control and x(t) is actual output of the system. In our numerical
experiments we considered the system given by eq. (2) for c=0.35 and as x, we took a
chaotic trajectory obtained for this system with initial conditions xo=0.01, x,=0. When
the control dynamics (4) is applied our system evolves and reaches the desired trajectory
x;(t). We have studied the dependence of the recovery time rR (the time after which the
trajectory from randomly chosen initial condition reaches the desire trajectory with the
assumed precision 104, on r. For r in the interval (0.01-0.1) we estimated TR for randomly
chosen 500 initial conditions and averaged them. As expected the recovery time decreases
when r increases - Figure 3.
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Figure 3 Recovery time rR versus stiffness coefficient •T.

The presented methods are less general than the OGY method. They can be applied
only to the systems which displayed specific apiori known behaviour. This requires the
knowledge of equations of motion. On the other hand, to apply this method we do not have
to follow the trajectory and wait till it will be in the appropriate target region. As an effect
of control it is possible to obtain aperiodic trajectory which is different from original
chaotic trajectory in such a way that it can be predictable (it is characterized by nonpositive
Lyapunov exponents). These methods allow to control dependence on initial conditions in
chaotic systems and can encourage practical applications of them.
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INTRODUCTION

The prediction of a circular decelerator's behavior during the initial phase of the
opening process is an important technical barrier for researchers in the airdrop community.
As a parachute is expected to open successfully at higher speeds and lower altitudes, the
ability to predict the stability of the initial interaction between the decelerator and the flow
field becomes crucial. A stability analysis of a mathematically rigorous model for this
process would predict which conditions would result in various types of stable and unstable
behavior. The analysis would provide details about the shape of the canopy just prior to the
inflation process. Currently, all models of the opening process (Steeves, 1989; Ross, 1971;
Purvis, 1982) apply only after the decelerator has attained some assumed initial shape.

The subject of this paper is the development of a mathematical model of a canopy's
behavior just after the canopy is extracted. This model requires the development of a partial
differential equation (PDE), which governs the interaction of the canopy with the flow field.
The derived model could be analyzed using dynamical system theory to determine the
stability of the canopy as a function of the values of various physical parameters (e.g.,
airspeed and line tension).

There are numerous models in the open literature for the interaction of a flexible
structure with a flow field; for an overview see Dowell, 1980. Typically, these models were
created to analyze the aerodynamic flutter problem of a structure in a supersonic flow field.
Since most Army airdrops are performed at subsonic speeds, these models are not directly
applicable. Work has been published for problems where a pipe either conveys fluid or is
in a flow field (Paidoussis and Issid, 1974; Paidoussis, 1966). These models were either not
applicable, such as those for pipes conveying or too restrictive, such as the linear
models of Paidoussis, 1966. Hence, the devel, of an applicable model was essential.

The application of dynamical system theo& aerodynamic stability problems is not
new. In fact, the supersonic flutter problem has been examined in some detail (Holmes and
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Marsden, 1983; Dowell, 1966, 1980). The stability of pipes conveying fluid has also been
examined by Holmes, 1977. The idea is to use dynamical system techniques to find the
"essential generic models" from the full system of PDEs (Holmes, 1977).

PHYSICAL MODEL

The decelerator is modelled as a long thin tube, with mass per unit length m, which
is simply supported at each end. The tube is immersed in a fluid which is flowing with a
free stream velocity U parallel to the initial (undeformed) axis of the tube. The tube may
also be subject to an initial axial load, T., applied at the right support by displacing the
right support.

The boundary conditions are chosen to model the attachment of the decelerator to the
payload at one end and to the extraction chute at the other end. The boundary conditions
wherein both ends are fixed or one end is fixed with the other free may also be used.

The material is assumed to be viscoelastic and to obey the Kelvin-Voight model, as
assumed by Holmes, 1977 and Paidoussis and Issid, 1974. The axial extension, w(x),
induced by the lateral deflection y(x) is given by f (y,)2 dx.

Paidoussis, 1966 used the result of Lighthill, 1960 for the resultant relative velocity,
v(x,t), between the tube and the flow to derive a linearization (first order approximation)
to the drag experienced by the tube. To derive a better approximation, it is necessary to
examine more closely the drag equation and the geometry of interaction of the tube with
the flow field. Taylor, 1952 based his model for the effect of tube inclination to the flow
on a curve fitted to laminar flow data in which sine squared worked well. The difficulty
with this work is that the sine squared term leads to terms in the PDE which are even in
y. This result is not physical. The same data have been fitted well by the current author
using sine cubed for the nonlinear extension and this fitting leads to physically meaningful
terms for the PDE, i.e., terms which are odd in y.

A new drag equation was derived to include the effect of the tube's velocity in the y
direction on bo! lie magnitude and direction of the total fluid velocity relative to the tube
and the new ar extension to the drag. Expanding the resulting equation in a Taylor
series and ret• the first set of higher order terms, the normal drag force becomes

F,, -- C U2y + U](1)
+ Uy 2 ( ,-))3 + UC2,) 2 ]

The longitudinal drag force is the one used by Paidoussis, 1966. Thus, the equation
of motion may be written as (see Paidoussis, 1966; Holmes, 1977), with simple supports,

+E + [U k I , 1(y (2)2 2+ ÷ ,,,,, + C12yI+IL70'U 1U (2)

+ 2 1 tU + +

+ .+.~~ucA(R-..!yy)
3 + ic7P"12t3R-.1)(y')2 .9 0S2 2 )

Equation 2 is in dimensionless form. If only the linear terms in equation 2 are
retained, the resulting equation is equivalent to the linear PDE examined by Paidoussis,
1966. If the last two nonlinear terms on the left hand side (LHS) of equation 2 are
eliminated, the resulting equation is similar to that derived in Holmes, 1977.
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DERIVATION OF LOW-DIMENSIONAL MODELS

The eigenfunctions for simple supports are sin(.jox). Using Galerkin averaging (see
Dowell, 1966; Holmes, 1977) of equation 2 with y.=•j.L.rj(x)sin(jxx) gives a set of n
second order ordinary differential equations (ODEs) in the time coefficients r,{X). Truncating
the series at n = 1, and 2, gives two low-dimensional models:

for n =l:

n3e
F, + Altf + Blr, + ic-'r(

2 (3)

ler 1P1 + 2 tit2fi 0

2 8

for n = 2:

, + A, + Br, + 2u2r, 40Up

+ 11t 11 922 24a

+ KX4•2[2r, + 2r2]rt + oa--[r1tr + r1 2]r1  (4a)

+ 1E•c,,2(R__j)[r!r2 .4432 5 2-,,r2]

2 + 35,t,

+ 7cCTr2cu(3R-1*)[f 1r + ,•'ri,] = 0
2 8

P2+A + B2r2 + -C"2,-ý Wt
21 4

"+ KX[2r: + 8r2
2 r2 + T2[4rt, + 16r/2 1r2  (4b)

"+ 3C7,U 2R 1 176 2 4 3]•cr2 +[ _ -ýr
--- 2 - 3 5 k t 5

+ 3t2c01n (3R - 1)1 2 + 41 ] 0

Where, A, = ý4S 4ca +- cTU , B4--c4s 4 + [r -u 2
]e

2s 2  (5)

RESULTS

This section describes the use of dynamical system theory to investigate the bifurcation
behavior of the low dimensional model given by equation 3.

Equation 3 has equilibrium points at

x 2 = 0

4 3(6)

......x1 + Btx = 0
2
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Equation 6 agrees with the results obtained by Holmes, 1977. If B, > 0 , then (0,0) is
a unique fixed point and it is a sink. This means that the undeflected shape is stable. If B,
< 0 , there exist three equilibrium points given by (0,0) and ([_±2B/,/csx 4]"f, 0) . Unlike
the problem examined by Holmes, 1977, a three parameter bifurcation space (u, 17, R) E
RW exists because of the new parameter R, defined as R=Cv/Cq. The tube is now unstable
since the center fixed point is a saddle and, for R large enough, the other two are sinks (see
Holmes, 1977). Note also that the change in sign of B, from positive to negative takes
place at the Euler buckling mode. For the case where R < Rk (where R, is the critical
value above which the results agree with Holmes, 1977), different results are obtained. For
B, > 0 there still exists a unique fixed point at (x,,x2) = (0,0) . For B, < 0 and R > Ra, the
structure is identical to that found by Holmes, 1977 and there are three equilibrium points,
one saddle and two sinks. If, however, R is reduced to a value below R, then the two sinks
become sources and a pair of limit cycles is born. Physically, these limit cycles correspond
to the canopy oscillating about either one of the displaced positions, i.e., fluttering.
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CHAOS IN A MODEL OF A RAILWAY WHEEISET

Eva Slivsgaardl and Carsten Knudsen2,

1Laboratory of Applied Mathematical Physics
Physics Laboratory ImI

The Technical University of Denmark

INTRODUCTION

There are a varity of nonlinear topics in railway vehicle dynamics. In this
paper we examine a simple nonlinear model of the motion of a suspended railway
wheelset in the low velocity range between 0 and 13 m/s. The wheels have conical
wheel profile and roll on a straight and horizontal track unaffected by external
torques. The suspension elements have linear characteristics. The nonlinear part is
given by the relation between the creepage and the creep forces in the ideal contact
point between the wheel and the track. The effect of flange contact is modelled by a
very stiff spring with a dead band.

A Chaotic motion is presented by a one-dimensional bifurcation diagram
where the wheelset velocity, V, is used as control parameter. A first return map in the
chaotic region is examined by symbolic dynamics.

EQUATIONS OF MOTION

According to Vermeulen and Johnson 4 the resulting creep-force is given by

U I lU2 +1 U3 , u<3
FR(u)= , U = (G1waebe/,N),R

1, u 3 (1)

ER (ex/') 2 + (f/ 2  1 _ 1 r avq+ d x

Vdt Vdt r0

The lateral creep-force component, F., and the longitudinal creep-force
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component, F7 . is then determined by

-z (4/i)'FR/CR , FY = (4,/$)FR/CR (2)

When the flange of the wheelset touches the rail, a restoring force on the
lateral displacement occur momentarily. This force is called the flange force and is
given by

ko(x - s), 8 < x,

FX) 0 , -S 5 X 5 6, (S . 0.0091 m). (3)

ko(x+), x < -6,

The equations of motion for the wheelset are obtained by including the

suspension, friction, and flange forces in Newton's equation

md 2x/dt 2 + 2klx + 2Fx + FT(X) = 0 (4)

Id2fp /dt 2 + 2aFy = 0,

x denotes the lateral displacement, p the yaw angle.
Through a change of variables these equations of motion are converted to a

fourth order autonomous dynamical system. We have used the software package
PATH 2 to follow both stable and unstable periodic solutions as the control parameter,
V, is varied.

NUMERICAL RESULTS

Figure 1 shows a bifurcation diagram of the dynamics up to V = 10.8 m/s.
The stationary solution remains stable until the speed reaches 10.050 mi/s, where a
supercritical Hopf bifurcation creates a stable limit cycle. The amplitude of the limit
cycle increases rapidly with the velocity until flange contact occurs at V/= 10.056 m/s.
A magnification of the bifurcation diagram just after flange contact reveals the
transistion to chaos: First a symmetry breaking pitchfork bifurcation, followed by a
complete period doubling cascade. These bifurcations appear in a very small range in
speed (AV = 0.9003 m/s).

A crisis is evident at V = 10.183 m/s, where three-band chaos develops. The
bands narrow with growing speed. Especially, the center band narrows onto flange
contact. At V - 10.21 m/s the bands vanish to periodic solutions. Immediately after,
a Floquet multiplier leaves the unit disc at + 1 and large scale chaos develop.
Calculating a return map of the value of the lateral deviation at the n + 3'rd
intersection (of the trajectory with the maximum value of the lateral diviation) against
its value at the n'th intersection at V = 10.215 m/s reveals that the transition to chaos
is through type-I intermittency.

At V - 10.26 m/s, the symmetric chaotic attractor splits up into two
asymmetric chaotic attractors with two-band chaos. The four bands decrease in
amplitude, and at V = 10.3025 m/s they are replaced by two asymmetric period-2
oscillations. These limit cycles exist for an extremely narrow speed range, and they
undergo a reverse period doubling at V = 10.303 m/s. Decreasing the speed instead
shows that the period-2 solutions bifurcate exactly at the value where flange contact
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occurs. The transition to chaos is through type-HI intermittency as indicated by a
return map at V = 10.295 m/s.

At V = 10.50 m/s a pitchfork bifurcation restore the symmetric oscillations.
The symmetric limit cycle exists up to V = 13.81 m/s.

SYMBOLIC DYNAMICS

Figure 2 shows a return map of the value of the lateral deviation at the n +
l'st intersection of the trajectory with the maximum value of the lateral deviation
against its value of the n'th intersection at V = 10.215 m/s. Inspired by the strong
influence of flange contact, the interval of the return map, I, will be dividede• into
five subintervals I, - I. (see the figure). We can construct the transition matrix

0 0 1 1 1

1 1 0 0 0

A= 1 1 0 0 0 (5)

0 0 1 1 1

0 0 1 1 1

The return map on I is topologically conjugate to a shift map on the set of
all possible itineraries allowed byA. This means that for each itinerary allowed byA,
there exists one an~l only one orbit for the return map and vise versa (for more details
see Knudsen et a").

The number of prime periodic orbits of period k can be calculated as
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N(k) _ (tr(Ak) - -1si<k; ilk N(i).i )/k (6)

An analytic calculation of the topological entropy yields

h - log((3 + F5")/2). (7)

The positive value of the topological entropy implies so-called topological
chaos, meaning that at least chaotic transients exist.

DISCUSSION

The numerical results help us to understand the complicated behavior of a
rolling wheelset.

The trivial solution loses its stability in a supercritical Hopf bifurcation.
Hereafter periodic and chaotic motions can exist, but the periodic oscillations
dominate the examined speed range. We emphasize that our symbolic dynamics
calculations show the existense of topological chaos.

More detailed irvestigations of the dynamics of the rolling wheelset can be
found in Knudsen et aL".

REFERENCES

1. Grebogi, C., Ott, E. and Yorke, J,.A, 'Chaotics attractors in crisis', Physical Review
Lettr, 48 (22), (1982) 1507-1510.

2. Kaas-Pedersen, C., PATH user's guide, Laboratory of Applied Mathematical Physics,
The Technical University of Denmark (1989).

3. Knudsen, C., Feldberg, R. and True, H., 'Bifurcations and chaos in a model of a
rolling railway wheelset', PhiL Trans. R Soc. London Set. A, = (1992) 455-
469.

4. Vermeulen, P. J. and Johnson, K. L, 'Contact of nonspherical elastic bodies trans-
mitting tangential forces', J of AppL Mech., U1 (1964) 338-340.

5. Wiggins, S., Global B~fuaions and Chaos, Springer-Verlag New York (1989).

168



NONLINEAR MODELLING OF SHIMMYING WHEELS
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INTRODUCTION

The problem of the so-called shimmying wheel has been studied in the special
literature for several years (see e.g. the early paper of Schlippe and Dietrich, 1941).
These investigations are stimulated by the studies of the dynamical behaviour of
trailers or those of the steered wheels of cars, landing gears of aeroplanes, etc. (see
e.g. Scheidl et al., 1985). The complex dynamical behaviour of these wheels clearly
refer to nonlinear -ibrations.

The present paper summarizes the model considerations of a single towed wheel
from the view-point of nonlinear dynamics only. The wheel is considered with an
elastic tyre characterized by the creep force presented by Pacejka (1966b). Similar
creep forces are often used in railway dynamics (see e.g. True, 1987), too.

The existence of chaotic shimmy motion is shown by St~pin (1991) when the
wheel itself is rigid and the king pin is elastic, i.e. when the classical Coulomb friction
is used to describe the contact of the wheel and the ground. The Coulomb friction is
strongly nonlinear, but it cannot model the real contact forces if the elastic element
of the structure is at the wheel, and the contact region is not a single point. This
explains the present analysis of the nonlinear creep force and nonlinear geometry in
the dynamical model.

MECHANICAL MODEL

The top- and side-view of a wheel rolling on the plane (x, y) is presented in Figure
1. The figure also explains the basic notation: I stands for the carcass length, the
half contact length is denoted by a and the so-called relaxation length of the tyre is
the constant a. The towing speed v is constant and prescribed for the king pin A.

Futur, Direcions of Nonlinear Dynamics in Physical and Biological Systems
Edited by P1. Chsiviane et aL, Plenum Press, New York, 1993 169

- I



Figure 1. Mechanical model of a towed wheel.

In accordance with Pacejka (1988), two general coordinates are used: the carcass
angle ¢b and the lateral position q of the leading edge L of the contact line L - E.
The motion equations assume the form:

IA'k -lF•(q) - Mod(q) - ku,, (ha)

aa

The first equation comes from the basic law of dynamics, where 'A is the wheel mass
moment of inertia with respect to the z axis at A. and k denotes the torsional damping
factor which describes the viscous damping arising at the king pin and at the wheel
contact region. The creep force FM and moment Mol formulae are borrowed from
Pacejka (1988) (we do not use his "magic formula", though):

F5 q) f22.2 C-VIq, IqlI < q8 t O .O45•~pFz
ag t l Flsignq, Iqli -q Ln

Moz(q) { O.16iiFzasin(69.8q-¾Mq), I-I < q (

0, Iqi -> q8•

where pF, is the overall friction force when the wheel fully slides, i.e. when IqI > q~j.
The specific carcass lateral stiffness is denoted by co.

Equ. (lb) comes from a kinematical constraint which means that the velocity
of the leading edge L is zero. It also involves a condition about being no kink at L
(see details in Pacejka, 1988). In the subequent section, we show that the nonlinear
geometry in (lb) is responsible for the existence of an unstable limit cycle.
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UNSTABLE PERIODIC MOTION

Introducing the carcass angular velocity v = as a new variable and using a
third order truncated system of (1), we rewrite the motion equations in the form

d (0 1 0 ) + 0 3__k c __3
dt 0 -L l- +- V S q + h.o.t., (2)

1 -a - E; _Lbq

where cl and c3 come from the power series: 1F,(q) + Mo,(q) = c1q - c 3q3 + -
If the viscous damping is neglected then a clear analytical calculation can be carried
out. With k = 0, the Routh-Hurwitz criterion gives the stability condition of the
trivial solution in the form: I > 1,. = a + a. At the critical parameter value 1 = lcr,
the characteristic roots are given by

/1 ,2 = ±iw = +Vac- - I _ 3 = or.VIA l•U

Following the Hopf bifurcation calculation method of Hassard et al. (1981) or Stdpin
(1989), we can prove the existence of a subcritica] Hopf bifurcation at this critical
point. Neglecting the de ils of the lengthy algeabric work, we present only the final
result here: the approximation of the unstable periodic motion which exists around
the stable equilibrium for 1 > Icr: (sin(wot),

Vi= 2 -1 W cos(wt) I (3)
\ a sin(wt)

As there is no damping, there is no attractor outside this unstable limit cycle since
the nonliner creep force is potential in this case.

NUMERICAL SIMULATION

The simulation results of (1) has confirmed the Hopf bifurcation calculation.
Figure 2 shows the unstable periodic solution (3) in the attractive centre manifold
which is approximated by the plane spanned by the corresponding eigenvectors of A, .2
If a solution starts outside the cylinder (the domain of attractivity of the equilibrium)
at (¢o; v0; qo) = (-0.2; 3.0 [1/s]; 0.02 [ml) then it spirals outwards without finding
another attractor. If it starts inside, at (0.2; -5.5 [1/s]; -0.03 [ml), then it spirals
towards the stable equilibrium. The other parameter values are fixed as follows: IA =

0.3576[kgm 2], c, = 10' [N/mr2 ], a = 0.04[m], a = 0.12[m], 1 = O.1605[m], v =
10 [m/s], pF. = 800 [N].

When the damping factor is not zero, e.g. k = 0.3 [Nms], and the carcass length
is reduced to 1 = 0.155 [m], the trajectories starting at 00 = 0.2, 0.25 and 0.45 while
V0 = q0 = 0 clearly refer to two periodic motions: a stable one appears around the
original unstable limit cycle. However, this new stable limit cycle is caused by the
damping and not by the nonlinearity of the creep force. This attractor may seem
to be a limit cycle, but if its amplitude is greater than q,1, full sliding occurs and
(1b) does not hold anymore. A correct modification of equ. (1) could show a chaotic
solution there as in the case of St~p.n (1991).
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Figure 2. Trajectories in the phase space of the undamped system.

CONCLUSIONS

The existence of the unstable limit cycle in the dynamics of shimmying wheels
is due to the nonlinear geometry of the structure. The presence of dry friciton at the
king pin (as used by Pacejka, 1966a) is not essential to explain the experimentally also
verified unstable periodic motion (see Pacejka, 1966b). The fact that the nonlinear

creep force cannot stabilize the system without additional viscous damping refers to
an important approximation in the mathematical model (1), namely that a stationary
(or quasi-stationary) creep force is applied in the dynamical equations. This requires

further analysis.
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INTRODUCTION

The most fundamental change in Physics this century has been in the role of the
observer. One consequence of the latter is symmetry, i.e., that two observers must
perceive the same physical reality structure, as in relativity, and a second consequence
is Quantum Mechanics. What we propose here is that an underlying nonlinear partial
differential equation (PDE) can describe high-energy physics phenomena.

Classical PDEs are local and realistic, but they violate causality as formulated
by Bell [1]. Bell's assumption has two parts:
1) There exists a conditional probability, dependent upon the inputs of the experi-
ment, for the state of a photon coming out of a scattering experiment.
2) This conditional probability density is the correct basis for predicting the outcome
of an experiment, regardless of what measurements are made, so long as the inputs
to the experiment are the same.
In PDEs, the expected outcome would correspond to the probability of measurement
dependent on all the information available. (Inputs and choice of measurement de-
vice are important boundary conditions in solving PDEs). The implicit assumption
of time-forward causality is, however, not valid at the microscopic level; as shown
in [21, the time-symmetric character of quantum calculations explains why QFT is
consistent with Bell.

The notion that classical theory is the limit of QFT as Planck's constant tends
to zero is true only for classical theories based on point particles. PDE theories need
not lead to this. In fact, we will argue that it is natural to think of particles as
chaotic solitons. By this we mean some form of stable localized excitation, rather
than a static object (to within translation). It will not be possible to deal here with

the entire structure of QFT [3,4].
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SOLITONS

Although solitons in two-dimensional systems like the Korteweg-DeVries system,
are well known [5] very little is known about solitons in higher dimensions. Roger
Newton (6] has argued that generalized methods for locating solitons are extremely
difficult to apply in four dimensions. Ad hoc approximations from four to two dimen-
sions, or topological shapes (like in the fluxes of fusion reactors) have been used [7].

We are developing a theory which, like QFT, has a unitary scattering matrix,
and in which particles are assumed to be some form of solitons. The calculations are
based on a scalar field (0). De Broglie proposed that particles are waves with a linear
and a nonlinear region. The nonlinear PDE would generate stable, quantized local
excitations. Here we will assume that free particles are chaotic solitons as defined
above. The quantitative development of De Broglie's ideas was always limited. Even
Norbert Wiener [8], when developing a statistical formalism for classical, failed to
reproduce the linearity of QFT.

Our formalism builds on an existing one which has been successful in engineering
[9]. The approach by Paul Martin does not yield an hermitian dynamical matrix H
and thus a unitary scattering matrix (S = limeiHt), but we have showed that we can
overcome that problem, at least for nondissipative systems with time symmetry.

The input is represented by a vector p-. The initial state of the field is (, t_)
at all points x at the starting time t-. At a later time t+ we will have O(x, t+) at
p+. The probability of a conditional output is based on a differential equation which
describes the dynamics between t- and t+.

In quantum scattering we can only estimate a probability distribution

P,(p+/p-)= f(p-) f P,(p+)O(n,t_)P,(0(x,t-/p_)d°q$(z,t-) (1)

These are in our view incorrect boundary conditions since they force us to have
time-forward causality. We suggest that the probability of any result comes from
convoluting distributions

P(final state) = Tr(PfPeg) (2)

where P(g) is a 'density matrix'

P(g) = W(g)P(O)W(g)H (3)

and P is the result of transforming the matrix R

Rnm(X7,"",inYl,"" ,]m) - E(4(x 1),... ,Yi(n)),=(•i),...,4,(•)) (4)

In classical chaos theory a strange attractor is an equilibrium set of states and the
states near the attractor must show stability by moving towards the attractor as time
goes to zero [11]. In our approach, since we have no time-forward causality, we define
stability as dispersion away from the soliton. One of us (P.W.) calls this 'emiss~v,
stability'. Also, deviations that "boost" the soliton (change its momentum) before
dispersing are allowed.
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It has been possible to show how methods from QFT can 'detect' chaotic solitons
in solutions of PDEs with a hermitian operator t [10]. In short, it can be shown
that the usual QFT method to locate 'bound states' provides a way to detect chaotic
solitons in PDEs. We have classical fields, rather than operator fields. It is interesting
to note that the method works best for PDEs of polynomial type, using calculating
procedures in the neoclassical view.

VACUUM

Paul Dirac and Pascual Jordan showed that bosons and fermions may be de-
scribed as excitations of quantum fields regardless whether they are photons, electrons
or protons. Thus the vacuum should not contain any particles. In non-relativistic
QFT there are no zero-point fluctuations, while in the relativistic vaccum there is
no empty space, based on the particle concept. The vacuum in the standard model
of particle physics is nearly reminiscent of the 19th century ether since it is a ferro-
magnet, a dielectric, a superconductor and a thermodynamic phase. The non-zero
vacuum expectation values of Higgs and Goldstone fields are different from zero-point
fluctuations, since the latter follow from the fundamentals of quantum theory. The
vacuum of a quantum field can have no unique definition in terms of particle number
alone.
The vacuum in Dirac's Quantum electrodynamics was an infinite negative energy
electron state. This sea was soon eliminated (with no meaning for of the antimatter
at the level of one particle) but with gauge covariance and microcausality and not
the canonical basis of quantum mechanics. Or 'first we had the luminiferous ether,
then we had the electromagnetic ether and now we haven't e(i)ther' [121. Our idea is
that zero-point fluctuations are due to the soliton nature of particles.

CONCLUSIONS

HERA (Hadron Electron Ring Accelerator) will be able to probe the internal
structure of the proton. This will make it possible to test whether the point like
assumption of QFT is correct. The lack of size of the electron is a problem waiting
for understanding.
A demonstration on how to use chaos in a physical system has already been pub-
lished [13]. In 1989 one of us (PAH) [14] suggested that a chaotic state could make
it possible to transfer nonkinetic energy into work. The problem therefore was to
solve the phase space topology of the non kinetic energy term in nuclei, to perturb
into an analytically solvable form and move the energy out for work. The difference
between the latter and Maxwell's demon is that the latter is not a statistical 'spill
over' problem but a problem of topology of chaotic regions.
We are confronted by that similar nonlinearities occur in general in Korteweg-DeVries
equation as in supersymmetry [15]. This, together with the measurements of weak
vector bosons seems necessary to explain high energy physics.
Finally, our view of measurement and observation leads to predictions like those of
the usual observer formalism of QFT, but there are some important differences. Here,
it is the measurement apparatus (e.g. polarizers set up where reaction products come
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out) rather than the act of observation (humans looking at the results) which has an
impact on the outcome and the impact arises because the measurement apparatus,
like the apparatus which generates the incoming particles, is part of the boundary
conditions. There is never a time when the 'wave function is crystallized'. Indeed,
our intuitive talk about 'retroactive causation' really refers to the reason why cer-
tain configurations of space-time never occur; it does not imply any kind of change
in what happened in the past. (Likewise, we never actually change the future in a
four-dimensional regime).

* These are personnal views and not part of our respective activities at NSF and Nanobi-
ology.

REFERENCES

[1] Clauser, J.F. et al, Phys. Rev. Lett. 23, p.880-884 (1969)
[2] De Beauregard, O.C., Krafatos, ed., Proceedings of a Workshop on Bell's Theo-
rem, Quantum Theory and Concepts of the Universe, Kluwer Academic Publishers
(1989)
[3] Mandi, "Introduction to Quantum Field Theory", Wiley, N.Y. (1959)
[4] Itzykon and Zuber, "Quantum Field Theory", McGraw-Hill, N.Y. (1980)
[5] Whitham, G., "Linear and Nonlinear Waves", Wiley Interscience, N.Y. (1974)
[6] Newton, R.G. "Three-dimensional Inverse Scattering", Springer-Verlag (1989)
[7] Eilenberger, G., "Solitons: Mathematical Methods for Physicists", Springer-verlag,
(1983)
[8] Siegel and Khang, J. Fluid Mech. 41, 593 (1970)
[9] Martin, P. et al, Phys. Rev. A 8, 423 (1983)
[10] Werbos, P., "Chaotic solitons and the Foundations of Physics: A Potential Rev-
olution", Appl. Math. & Comput. (in press)
[11] Grebogi, C. et al, Science, 238, p632-638 (1987)
[12] Hoffmann, B. 'The Strange Story of the Quantum', Penguin Books, Har-
mondsworth, p. 37 (1963)
[13] Shinbrot, T, et al, Phys. Rev. Lett. 68:19 (1992)
[141 Hansson, P.A., IAA-89-667 (1989)
[15] Wess, J., Bagger Supersymmetry and Supergravity, Princeton University Press,
Princeton (1983)

176



Q-HERMITIAN CONJUGATION, QUANTUM GROUPS

AND SQUEEZING

E.Celeghini1 , M.Rasetti 2 and G.Vitiello 3

1Dipartimento di Fisica and Sezione I.N.F.N.
Universita' di Firenze, Italy

2Dipartimento di Fisica and Unita' I.N.F.M.
Politecnico di Torino, Italy

3 Dipartimento di Fisica, Universita' di Salerno
and I.N.F.N. Sezione di Napoli, Italy

Quantum groups have shown to be an exceptionally promising and rich structure
whereby one can expect a growing wealth of new results in statistical mechanics and
quantum field theory1 . Stemmed out of the algebraic structure dictated by integra-
bility conditions (quantum Yang-Baxter (q-Y.-B.) equations) for a class of integrable
systems, quantum groups can be intuitively thought of as the deformation of the
universal enveloping algebra of some given Lie algebra C of dynamical variables in-
duced by replacing the Jacobi identities with the q-Y.-B. equations, yet preserving
the associativity properties of £. As usual, quantum groups is synonimous of Hopf
algebra.

On a different side, it has been recognized that squeezed coherent states2 ' con-
structed as generalized coherent states for suitable algebras may describe a wide class
of systems characterized by reduced quantum fluctuations4 - 7.

In a recent papers, we have shown how the two concepts of quantum groups and
squeezing can be bridged in the simple setting provided by a set of states which are a
modified version of the states introduced by Biedenharn and McFarlane9 (B.-McF.).
We conjecture that the notion of quantum group coherent state is in general the
natural candidate to describe squeezed quantum states of matter. In this report we
closely follow ref. 8 and 11 to which the reader is addressed for more details.

The quantum version of the Jordan-Wigner map is generated by the set of oper-
ators {a, 4q, N1; q E C}, with relations

E ,G]= -G, 1N, 9 = d9  , (1)

aq aq - q 1 aq a. = , - ,(2)
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The structure lying behind (1) and (2) has been shown to be a quantum super-
algebra10 S- osp,(112).

As we intend to discuss the property of squeezing of the generalized coherent
states (G.C.S), associated with S, we have to equip first the realization (1), (2) of
S with the notion of hermiticity. We work in the customary Fock space F, which
will make the physics of squeezing much more transparent. This also implies that
Nt= N, - N where N = N1=1 is the usual boson number operator.

It is worth stressing that the notion of q-hermiticity may be introduced in dis-
cussing eq. (2). Let us briefly illustrate this point.

We assume the usual set of (q-independent) operators {a, at, N = ata}, with
relations

[N,a]=-a ; [N,atl=at (3)

and with ataln >= nin >, al0 >= 0. We denote by {In> ininteger > 0} the usual
basis of F. Thus at denotes the conventional hermitian conjugate of a. However, we
now also introduce the operator a(q) -- &q with the requirements

[N, a•] = aGq (4a)

aq --+ at for q (4b)

In other words, we introduce the notion of q-dependent hermitian conjugation by
defining the q-hermitian operator a, for each point q of the complex plane excluded
the origin 0 (see below). Although the operator a does not depend on q, as said above,
however we also write a, - a for homogeneity of notation. From the assumption (4a)
it follows that

d.in >= g(n,q)in+l> (5)

By using aln >= n1 In - 1 > we also have

Satq in >= (n + 1) ½g(n,9) in > (6a)

a, aqjn >= ng(n - 1,q)(n > (6b)

where g(n, q) is a function to be found and on which we put the requirement of
boundness for any q E (C - 0) (see below). We also assume for any nonzero q the
normalization g(0, q) = 1 and g(-m, q) 0- 0, m > 0.

Fron (6) it follows

< nlaa, - &,a, In >= f(n, q) (7)

with

f(n, q) =- F(n + 1, q) - F(n, q) (8a)

F(n,q) = n"g(n - 1,q) (8b)

Of course, from our hypotheses it also follows that, for any q E (0 - 0), M(0, 0)
1, F(0, q) = 0 and

f(n, q) -- 1 for q -- 1 and for any integer n > 0 (9a)
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F(n, q) -n for q -1 ad for any integer n > 0 (9b)

The assumption of boundness of g(n, q), and therefore of F(n, q) and of f((n, q),
leads us to express F(n, q) in its most general form as

F(n, q) = • c(n)q-, q E (C - 0), n>0. (10)
m=O

From (10) and (8a) we finally find that one possible solution for the coefficients
cý,,(n) brings us to

n-1

F(n,q)= E q-A''-q-A-[n],, n>0 (11)
M=O

and

g(n,q) = (n+ 1) q-[n + ]q, q E (C -0), n >0 (12a)

f(n,q) = q-", q E (C -0), n >0 (12b)

where
[n), q2 n _ 2 sinh (2nz)

qi -qi- sinh~z)

with z Ingq z + iy.
Eq.(2) is then obtained from (7) by using the rescaled a. =- a, q-2. Eqs. (1)

are also satisfied. We notice that [ aq, dq I = [ n + 1 q - [ n ]q, which is now symmetric
under q --+ q- 1 (contrarily to eq. (7), see also eq. (12b)), and that (11) is consistent
with the co-covariance of such a commutator.

Under the assumptions made above, from the point of view of the space of states
the q-hermitian conjugation leads to the construction of F, = {10 >, In >q=

(n!) ([n],q!)-1(,)n10 >; n > 0) for any q E (C - 0). In other words, we have a fiber
bundle with fibers Fq and basis (C - 0).

To procede in our discussion is now also convenient to introduce at and a.
Conjugation of (1) and (2) immediately leads then to

Q' = a,. [X,(N)]-' , d' = x,(N)aq. , (13)

where Xg(N) is a function to be determined by suitable self-consistency conditions.
We fix it so that aq, at are canonically conjugate with each other, i.e. so that in the
corresponding sector S be identical with the usual Weyl-Heisenberg algebra, namely
[a.,'4] = 1. This condition is implemented by the choice

Xq(N) = ([N + 1]9-[N + 1]q)! (14)
N+I (4

One has as well a,. = aq and ai. = a,.
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Notice that as q-1,at a~ at at a. a ~atalo ata N (recall that
at% N

a, = r a,).

In view of (13), (14),

aIn > = ([n. )L n-•1n-l>
[n],. [ (15)

A.(n>= [n+ ) ([n+ 1 -jn±1],.) In+ 1>

whence aaln >= fn]JIn >. 10 > is the highest weight vector of S: agJo >= 0.
If one defines now the coherent states {I 1;q > Ia,q E C} by

a9I0;q>=aIa;q> (16)

it is straightforward to check that

Io;q>=A(IaI)exp9 (adg)I0> , (17)

where exp, ( E - is the quantum version of the exponential function ([n +.=O ([n 0

1],! [n + 1] 5 [n]!), and Kr(Ia1) is a normalization factor which with the above
choice turns out to be independent of q: A'(Ia1) = exp (-I 12 ).

Then also,

1 L4 (In];.'.)- In > (18)ja; q > = exP J-a112) In >

We notice that in the limit q -* I, a; q > turns into a customary Glauber
coherent state 12.

We can thus define the quantum analog of position (QV) and momentum (P,)
operators

(19)

Q9 and Pq are hermitian and have commutation relation

[QP, p] i(N,[+1XfN+I]q- [Nq[_NX.) ih9  (20)

Operators (20) give rise to a quantum version of the quantized harmonic oscillator
(q.h.o.), with hamiltonian

2m _ Q 2!k,(t +dq (21)
1 .- 2 1 q

I ,(IN + I1 I 9 + 1],- [NN],+N+]f .[
2k N+I + N
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Eq. (21) suggests a possible experimental test of the q-effects through the spec-
trum of the q.h.o.for large N. If one considered indeed eq. (20) - in the low
z limit - as a canonical form with h, = h (1 + 4 Re (z2)N(N + 1) +O(z 4 )), the
q.h.o. hamiltonian would then be written, up to the same order, as H, = hlw=

(N+ 1), with w9 = w (I - IRe(z2)N(N + 1) +O(z 4 )). In this perspective the
spectrum of H. can be thought of as that of the usual harmonic oscillator in which
the level spacing is deformed in such a way that it increases with n (up to O(z4 ) as

(i - _Re (z2)(n+ 1)2))

In order to show that the (G.C.S), {Ila; q >} are squeezed, we proceed now to
evaluate the variances of Q, and P,. Denoting, as customary,

(AQ,) 2 =<q>-<Q,> ,(AP,) 2=< P 2>-<P,>< , (22)
where < . >=-< ok;ql e la;q > , one can readily check that one can write

(AQ,) 2 = ro (A, + B,), (A P,) 2  1mh (A, - B,), with

Al a<at > + < a l4>-2 <4, ><at > , B, = (Adt )2 + (Ad, )2 . (23)
For simplicity of notation, we shall henceforth use units such that mw = 1.

Due to (20), we say that one has strong squeezing in P. (respectively Q,) if

API < 1< h >1i (respectively AQ, < I < h, > ) . Analogously we say

that one has weak squeezing if h q is replaced by h in the above inequalities. It should
be pointed out that the (fla; q >}'s are not minimum uncertainty states I. Thus, not
surprisingly, the locus of points C for which B, = 0 does not necessarily separate,
in the (a, q) space (isomorphic to C x C) regions characterized by weak squeezing in
Pq from regions with weak squeezing in Qq, as onc has with conventional squeezed
states's.

The calculations are lengthy but straightforward. Notice that a12 = < N >,
therefore in our numerical analysis we confine our attention to relatively low !CV
10). One finds

e-'2I 1  jelaI2exp(_z) - e1a12exp(_•) 
2 
2(24a)qda, >< at > - 211 -ein (24a)

< dtq + ,dtq> = e-101'
41k,1 2 I sinh (½z)12

{2 [eIaIZ2 C•h cosh (1al2 sinh x) - elG 2 '°'z cos (Ia1 2 sin Y) (24b)

+ Ila2 [Ei (1al2e") + Ei (lala2e-=) + 2ReEl (-IaI1'e')] }
This is related to the fact that also the states (17), as the B.-McF. states are not

coherent states for the q-W.H. group, in that they do not have the right transformation
properties under the quantum group action.
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B e1 Re ( 1 2 + exp ( + i112 eZ-
21a12 {sinh(Iz) 1 2 2p } (24c)

-2cosh(2z)e'"'- e-'" (exp(10 (a3e 2)- exp (la 2e-•)) 2  ;

where V. denotes the phase of a, whereas Ei(() and EI(C) denote the exponential
integral functions. Numerical results show that there is a rich structure with inter-
esting squeezing phenomena. In ref. 8 plots in the a-plane are reported which show
squeezing regions.

For different q's near 1 we find regions in the a-plane of strong squeezing and

curves C along which AP, = AQ, = ( hA) , crossing which one switches from a

regime with AP, > AQV to the one where AP, < AQ9.
For q not too close to the unit circle, it is always h9 > h, which corresponds to

the property that along the curves C lal grows monotonically and smoothly with Va.
The regions of both weak and strong squeezing manifest the feature of symmetry

under exchange of Qg and Pq, which geometrically corresponds to a rotation in the
a-plane by IV.

The relevance of the states for which lql ; 1 but the phase of q is nonvanishing,
which exhibit such a rich structure of squeezing features, is worth stressing. More-
over, in view of the physical applications of q-coherent states , the combined notions
of deformed Planck constant h, and of weak and strong squeezing may make the
states Ila; q >I's the appropriate tools for a phenomenological understanding of the
deformation parameter q.
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LARGE-A•NLITUDE NARROW SOLITONS IN LATTICES

K.A.Gorshkov, O.A.Druzhinin and L.A.Ostrovsky

Applied Physics Institute, Academy of Sciences
603600 Nizhny Novgorod, Russia

1. INTRODUCTION

Discrete systems have drawn much interest recently in the
context of the nonlinear wave theory. Propagation of waves in
electric transmission lines, solitary waves in molecular cha-
ins dynamics of lattices of non-linear oscillators may serve
as an examples where nonlinear processes are described by dis-
crete-difference1 eIuations and discreteness of a system may
become important

Lattices with nonlinear interaction between nearest neig-
hbouring particles often represent a good model relevant to
those in real systems. Usually, one can consider Hamiltonian
of a lattice in the form

N
H= E pn / 2 + (qn- qn-) ()

n=l

where O(z) is the interaction potential.
Dynamics of such a lattice is described by the equations of

motion

4n= F(qn+1- qn) - F(qn- qn_l), (2)

where F(q)= 80/aq.
Travelling waves in discrete lattices have been

considered by many authors. However, only in the case of Toda
lattice with exponential potential a solitary wave solution
was derived in an explicit form. Results obtained for non-
integrable lattices with polynomial potential with the use of
various approximations evidence tlaý,these lattices also can
support discrete solitary waves .

If spatial variations of a wave substantially exceed a
length of a lattice cell, one can expand forces in (2) to ob-
tain a PDE with quasi-continuous coordinate n. For example, in
cases of quadratic and qubic nonlinearities equations of moti-
on are reduced to Bo ?sP esq equations which is known to be
completely integrable . For waves propagating in one direc-
tion these equations in their turn can be reduced to KdV and
m-KdV equations, respectively, and corresponding solitary wa-
ves solutions are easily derived.

Figur Diracsom of Nonlinar r&^=wis an PhysicWaln~d Bilogowic Systemi
~dme~i by PL. Ckidae et aL, Pimum Press, New York. 1993 185



The problem becomes much more complicated for essentially
discrete dynamical regimes when scales of spatial variations
are of the order of one lattice cell. In this case the motion
of the lattice can not be described by equations obtained in
the continuum limit and other approximations should be used to
obtain a form of a solitary wave and relation between its pa-
rameters.

Some useful compromises can be achieved by using "quasi-
continuum" methods based on a more sophisticated approximation
of difference of forces in (2). Corresponding solutions obtai-
ned are more exact compared to solutions obtained in the con-
tinulp. limit and take into account discreteness to some ex-
tent '. Methods using weak and variational formulations give
equations describing parameters of solitary waves which are
approimated by a set of trial functions with a soliton-like
form

Another approach is that based on a "narrow soliton" ap-
proximation, when one considers high and short solitary waves.
In this essentially discrete case equation (2) can again be
reduced to nonlinear ODE which gives an approximate solution
for a central part of t e soliton in an explicit form. This
approach was proposed in and applied to the case of quadratic
nonlinearity. Solution obtained describes a discrete solitary
wave with large amplitude which occupies only a few lattice
cells and essentially differs from the Boussinesq soliton ob-
tained in the continuum limit.

In this paper using a similar but somewhat extended app-
roach we study solitary waves in the lattice with qubic nonli-
nearity. By regular procedure we derive a solution describing
both a central part of the soliton and its wings. In order to
check the robustness of the approach we apply the narrow soli-
ton approximation also to the case of Toda lattice. Comparison
of the exact solution shows very good agreement. We also con-
sider processes of interactions (collisions) between discrete
solitons.

2. SOLITARY WAVE SOLUTIONS

Let us consider a lattice of N particles with Hamiltoni-
an (1) and interaction potential with qubic nonlinearity:

t(x)= a.(x /2 + bx /4). (3)

Corresponding equations of particle motion is given by
eq.(2) with force

F(x) = a.(x+bx3 ). (4)

It is convenient to introduce displacement variables
Un= qn-qn-1 and rewrite (2) in the form

6n= F(Un+1 ) + F(U n_) - 2F(U ) (5)

Let us consider a solution in the form of a stationary
wave:

Un(t)= Uof(C), - (6)

wlere c and T are characteristic velocity and duration, and
8 = cT is a characteristic wave width. Note, that equation
(5) is invariant under transformation U 4 - U. Without loss
of generality we assume Uo > 0.
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Then, substitution of (6) into eq.(5) gives an ordinary
differential-difference equation for dimensionless function
f(C) in the form

aT2 4f) = f(C+6) + f(C-6) -2f(C) +

+ bU;-f 3 (C+6) + f3(C-6) - 2f 3 (C)]

In continuum limit 6 << 1 (or cT >> 1) using Taylor series of
F[f(C ± 6)] and performing twice integration over C one ob-
tains in particular the weli known mKdV soliton

2 2 /Un(t) = Usech[6.(n-cT)], c= Va.(l + bU0 12), 6 = (6bU;) 1 12

(8)
We are intere~ted, however, in narrow solitons with large

amplitudes when bW >> 1.
Then, only a few particles effectively take part in wave

motion simultaneously. Nonlinearity is strong so that linear
terms in eq.(7) can be neglected almost everywhere. Of course,
at larger IJI the solution becomes liney and proportional to
exp(-AICI) with exponent A easily found . However, this part
of the solution is vanishingly small.

The equation for f(C) takes an approximate form
1 " 2[f3(+6) + f3 3
-T2 f(C) = bU 0 + (C-6) - 2f3(c)] (9)

We assume that for large bWo soliton width 6-1= cT does
not depend on the amplitude and remains constant close to
unity rather then decreases to zero (as it does e.g. in
the case of Toda soliton),

26 const - 1 for bU >> 1. (10)
Later this assumption is verified numerically. Then, f" - f
and it immediately follows from (9) that soliton duration is
of the order o2

T ,l/abU2. (11)
Taking into account (12) one finds approximate expression for
soliton velocity

c Vab UO. (12)

Using (9) one can derive two equations describing the
main body and wings of a discrete soliton. Let us denote
corresponding parts of function f as fo and ft.

The first ecjuation is obtained in the region of s.all
leI, when terms f (C±a) in eq.(9) are small compared to f (C)
and can be omitted. Thus, corresponding equation takes the
form 3

0 0

where a a v/abUWT 2 
- 1. Also, conditions io(0)=1 and f'(O) = 0

should be taken into account.
Equation for wings of the roliton is derived from (9) in

the region C - t6, when terms f (C) and f 3(±6) are small com-
pared to term f (C;6)= f;(:;))- 1 and can be neglected,

3
(f; ).TS (13b)
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Note, that from eqs.(13a,b) follows that

t'7(€)= -1/2 f;€C(6).

This equation can be integrated to give the following
expression for soliton wings

F

f ( -!.f0 (') + s1 (C;5) + s ~ ±6, (14)

where constants s,2 are determined by conditions

fI(C) 0: f0 ;•(C) - 0 for C-(c. (15)

Thus, integrating eq.(13a) one obtains a solution desc-
ribing the main body of the soliton. Then, substitution of
this solution into (14) gives expression for soliton wings in
the region C - 5.

Note, that solution So and fi should be joined at some
point Co, where

fo(o R f(Co) f••o I R •o (16)

Matching procedure gives two equations for two unknown values
Co and 5.

Simple integration procedures leads to the solution
of (13a) expressed in terms of elliptic functions,

T[arccos fo0 (C), k] = aC, (17)

= (dx
where *(z,k)=f (- 2  

1 , k - 0,8. Moreover, since mo-0 (1-k sin z)*/
dulus k is close to unity one has cn * • sech t, and the ap-
proximate solution for the main body of discrete soliton can
be written in the form

Un(t)= Uo'fo(C), fo = sech aC (18)

Note, that substituting (18) into (14) one can not full-
fil conditions (15) which is explained by the fact that (18)
is a good approximation for (14) only in the central region of
the soliton. Thus, one should use more exact expression (17),
or integrate (13b) numerically with function fo given by (18)
(which gives main contribution to the integral).

Substituting solution (18) into the r.h.s. of (13b) we
obtain the following equation for wings

fS(C)- a/V-2.sech 3a.(C56)], (19)

where C - ±6. Taking into account conditions (15) we can inte-
grate eq.(19) numerically to find soliton wings. Comparison
with numerical results shows that analytical solution (18) is
close to the actual form of the soliton in the region ICI <
0,4 (long dashed line in fig.la). We obtained form of the so-
liton wings by numerical integration of eq.(19) with conditi-
ons (15) (short dashed line in fig.la). Joining procedure gi-
ves values Co - 0,4 and 8 - 0,3. Note good agreement with ac-
tual form of the soliton practically everywere.. 1

Dependences of soliton velocity c and width 6 on so-
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liton amplitude Uo are shown in fig.2a and 2b, respectively.
Dependence c(Uo) is fairly well described by approximate exp-
ression c s a(l + Wo) which for large amplitudes coinci-
des with (12) and for small amplitudes with (8). Similar exp-
ression is obtained in quasi-continuum approaches.

For large amplitudes (bUE >> 1) the width becomes cons-
tant and does not decrease which confirms our assumption. Si-
milar result was obtained in the case with quadratic nonlinea-

1.0 1.0

aI,

I I
-2.0 -1.0 -0.0 1.0 2.0 -0.75 0 .00 0.75

Fig. 1 Solutions (15,17) (a) and (20,22) (long dashed curves
for the central part and short dashed curves for soliton
wings) com pared with actual form of solitons in the lattice
with qubic nonlinearity (Uo = 4,3; c = 3,5)(a) and Toda latti-
ce (Uo = 4,5) (b) (full curves). Parameters a 1; b = 1.

2.0 - 6.0 c
/

5.0 
/

1.5 /

4.0

1.0 3.0 /

*2.0

0.5
* * * 1.0

a __ ___b_

Fig. 2 Dependences of soliton width 6- 1 =cT vs. soliton
amplitude (a) and soliton velocity c vs. soliton amplitude
Uo (b). Full curve corresponds to solution (8) obtained in
the continuum limit, stars correspond to numeric results.

ritya. This saturation effect can also be deduced from soluti-
ons obtained with the itse of quasi- continuum methods and va-
riational approaches 9 "

It is of interest to apply the narrow soliton approxi-
mation to the completely integrable case of the lattice with
exponential potential O(x) = a-exp(bz) (Toda lattice) in order
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to compare corresponding solution with exact analytical form
of the soliton.

According to approximation used above, the central part
of the soliton is described by function fo(C) which is obtai-
ned after integration of the following equation

f"(C)= -2 aT2Uo erp [bUof o (C)], (20)
0

with conditions f(O) = 1 and ((o) 0. The corresponding
expression takes the form

fo0 () = (bUo)- ln( sech2 a ) + 1, (21)

with coefficient a = T (ab) 1 / 2eXp(bU/2).
In the region = ±6 the soliton is described by function

fi(C) which is found from the equation (14) together with con-
ditions (15) in the form

f (•) = - fo(c5)/2 ± - (p6) + 1/2 + ln2/bUo, (22)
0

where C - ±5.
Exact solution is given by the following expression

f(C) = (bUo)-lln(l + sh 26sech 2), (23)

and parameters Uo and T are expressed through parameter

6 = 1/cT as

T=l/sh 6, Uo= 1/b In(i + sh 26). (24)

Comparison of exact solution (23) with solution (21,22) obtai-
ned under narrow soliton approximation shows very good agree-
ment (fig.lb).

Moreover, one can easily see that the matching condition
in this case implies that the approximate solution can be
written in the form

f'( = fo(e) - 1[fo(e+3) + f o(C-8)]. (25)

After substitution (21) into (25) and taking into account
that factor a tends to 1 for sufficiently large amplitude,
we find that fa coincides with exact solution (23).

Note also that in the case of Toda lattice there is no
saturation effect. Indeed, from (24) one finds for large amp-
litudes

a - bUO.

Thus, the width of Toda soliton always depends on the
amplitude and no saturation takes place.

3. INTERACTIONS OF DISCRETE SOLITONS

As it was mentioned above, in the continuum limit system
(4) becomes completely integrable and solitary wave solutions
correspond to mKdV-solitons. It is well known that collisions
of solitons cause only phase shifts while each interacting
soliton retains its identity. Generally, it is believed that
such interactions of solitary waves may serve as an indication
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Fig. 3 Different stages of collisions of two discrete soli-
tons of the same polarity (a), of different polarities (c,d)
and the process of reflection of the discrete soliton from the
fixed (right) boundary (b).
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that system is completely integrable, i.e. has the number of
independent integrals equal to the number of degrees of free-
dom, or illinite number of integrals in the case of a continu-
um system . However, in the non- integrable case under study
collisions of discrete solitons typically result in additional
effects such ar radiation.

We studiel numerically processes of collisions of discre-
te solitons and reflection of a soliton from the fixed bounda-
ry (figs.3). We found that collisions of two discrete solitons
generally result in some radiation (fig.3a). Reflection of the
soliton from the fixed boundary only changes its polarity, the
radiation being considerably smaller then that after collision
in fig.3a (fig.3b). Note, that amcunt of radiation released
due to collision may be very sensitive to initial conditions.
Namely, if initial positions of solitons are chosen in such a
way that collision of solitons is effectively equivalent to
reflection, the radiation is very small (fig.3b). However, if
initial positions of solitons are changed, the radiation is
much stronger (fig.3c). A possible reason for it is the strong
influence of the cell located between solitons: in case of an
exact antisymmetry of collision (or reflection) this cell re-
mains fixed throughout all interaction time (which
automatically is fullfiled for reflection).

Note, that the radiation field is small compared to soli-
tons amplitude, so that solitons practically do not change.
However, after several collisions radiation may become subst-
antial which results in an irregular motion of the lattice.

4- 4-

3- 3-

2- 2-

1 - I-

-I- -I-

-2- -2-

a t t-5 -5
0 15 3b 45 8 715 0 15 30 415 6b 715

Fig.4 Dependence of displacement U1 4 vs. time for initial
conditions similar (a) to those in fig.4a (one soliton) (a)
and (b) in fig.3a (two solitons).

In order to demonstrate how long soliton pattern can ex-
ist in FPU-lattice, we performed numerical integration of dy-
namics of solitons in a resonator with fixed ends (U= 0 at the
boundaries) for two different initial conditions. If initially
only one soliton is given, motion of the lattice remain regu-
lar for a considerable time (fig.4a). In this case weak radia-
tion is released due to reflections of the soliton from boun-
daries, and the form of the soliton as well as its energy pra-
ctically does not change. On the other hand, if two solitons
are present initially, their multiple collisions lead to subs-
tantial radiation and subsequent irregular motion of the lat-
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tice (fig.4b). This may serve as demonstration of an essential
role of collisions of discrete solitons collisions in the pro-
cess of thermalization in FPU-lattice.

4. DISCUSSION

The main subject of this paper are discrete solitary wa-
ves in lattices with qubic nonlinearity. The wave amplitude is
large enough, so that soliton is localized at a scale of one
lattice cell and only a few particles take part in motion at a
time. Using the narrow soliton approximation we construct an
analytical solution describing both the main body and wings of
the soliton. Soliton width is found to be independent of the
amplitude as the latter becomes large, so that a situation
takes place. Velocity of the soliton is proportional to its
amplitude in the limit of large amplitudes.

In order to demonstrate the robustness of the approach
used we applied it to the case of Toda lattice and compared an
approximate solution with an exact one. We find that for large
amplitudes there is a fairly good agreement.

We also studied numerically processes of collisions of
discrete solitons. We found that generally some radiation is
released. The radiation is very sensitive to initial conditi-
ons. For example, in fully antisymmetric case, when collision
of two solitons with different polarities and close amplitudes
is equivalent to reflection of one soliton from the fixed bo-
undary, the radiation produced is notably smaller.

Multiple collisions bring about irregular motion of the
lattice which can be regarded as a source of stochastization
in FPU-lattices.

As inviting future developments we consider application
of the developed analytical approach to the problem of
evolution of discrete soliton under the action of a small
perturbation (e.g. energy losses), generalization of the
theory to 2D- and 3D-systems and consideration of FPU-problem
from the point of view of the models of discrete solitons
ensembles.

Another class of probiems related to discrete description
and associated with soliton motion include "soliton lattices"
first mentioned in Here solitons are not necessarily discre-
te and can even be described by the continuum limit equations.
There is an ensemble of solitons with close velocities which
can be depgribed as classical particles interacting with some
potential.'

It is of interest to note that since a soliton typically
has an exponential asymptotic form f(C) = exp (-AC) the inte-
raction potential is also exponentlil and the lattice of soli-
tons is equivalent to Toda lattice . Thus, there is a soluti-
on corresponding to Toda soliton which may be considered as a
modulation soliton. The Toda lattice equation plays here the
same role as the nonlinear Shr6dinger equation for quasiharmo-
nic waves.

If modulation of the lattice of solitons in strong, i.e.
there is a large velocity difference, its dynamics constitutes
more readily propagation of a dislocation than oscillations of
solitons relative to one another. In fact, this case corresp-
onds to the essentially discrete dynamics discussed above.

A greater variety of processes is exhibited for lattices
of solitons with oscillating asymptotic fields (complex A)
such as in the case of Kawahara equation. There is a countable
family of bound states of such solitons as well as unstable
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17.lattices, the instability leading to a disordered motion".
Another interesting class of problems relates to "really

distributed" systems in a form of a continuous wave system
periodically loaded with discrete nonlinear elements which
form a kind of lattice, e.g. a transmission electric line with
nonlinear capacitiel or mechanical system of domains with non-
linear wall motions . Note, that in linear approximation dis-
persive curves in (cj,k)-plane form a typical multizonal struc-
ture in case of weak coupling. Then, phase velocities of a set
of wave harmonics may be close to each other not only for very
low frequencies (in the limit of the first zone) but in case
when each next harmonic lies in the subsequent zone (because
main part of dispersion curves lies close to the line w = ck).
Thus, there exists a class of waves with the scale much smal-
ler then the lattice period. They can be described as statio-
nary progressive waves on the lattice.
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1. INTRODUCTION

Very little is known about nonlinear entities in dimension higher than one.
their formation and dynamics are of great interest in various branches of science'.
Two dimensional structures2 -3 (domain walls, vortices) play an important role in
the material properties and they become crucial in nonlinear physics involved in
the problem of absorbates deposited on crystal surfaces. In this paper we focus
on the formation of localized states mediated by modulational instability in a two-
dimensional (2D) lattice. The paper is organized as follows. In section 2 we introduce
our model which is a two-dimensional non-dissipative Frenkel-Kontorova model with
additional nonlinear interactions. In section 3 the discrete equations governing the
dynamics of the lattice are reduced to a two-dimensional nonlinear Schr6dinger
equation in the low amplitude and semi discrete limit. Then, in section 4. the
modulational instability conditions of this equation are calculated. Section 5 deals
with numerical simulations, we investigate the role played by modulational instability
on the evolution into localized states of an initial plane wave, with low amplitude,
propagating on the lattice.

2. LATTICE MODEL

The basic model is made of a two-dimensional lattice equiped, at each node,
with a rotator or rigid rotating molecule. Namely, each molecule can rotate in the
lattice plane. At site (m, n) the angle of rotation is $tm,n. Each molecule interacts
nonlinearly with its firts-nearest neighbors and with a periodic .subltrate potential.
Under these coitditions the equation of motion of the molecule at site (in, n) is

mn = L(tm+1.n +.n..-n -2bn,) )+ G¾--m,"+i +$mn- 21b,
J J
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Here, J is the inertia of the molecules, GL and GT are the linear coupling coefficients
in the longitudinal and transverse directions while the parameters BL and BT
are the nonlinear coupling coefficients in the longitudinal and tranverse directions,
respectively.The last term in Eq.(1) is due to the substrate potential where Wo0

2 is the
strength of the potential barrier and w0 can be interpreted as the frequency of small
oscillations in the bottom of potential wells. Note that if the nonlinear couplings
is removed (BL = 0 and BT = 0) Eq.(1) reduces to the 2-D Frenkel-Kontorova or
2-D discrete sine-Gordon model4 . Next, we derive the nonlinear dispersion relation
corresponding to (1).To calculate the nonlinear dispersion relation, we assume plane
wave solution., with slowly varying envelope :

•,n,v(t) = •',, exp[i(wt - kLma - kTna)I + cc (2)

Here cc denotes the complex conjugate, kL and kT are the components of the wave
vector k=(kL, kT) , w is the circular frequency of the carrier wave which varies rapidly.
and e < 1. The small amplitude limit is considered, this allows us to expand the sine
function with respect to ,m.n up to the third order . On inserting (2) into (1) and
neglecting the third order harmonic terms we obtain the nonlinear dispersion relation

2,2 C'0 1 2 kLa C C 2(

=wo +4 tsin (_) + 4 0T sill
a 2 a2  2

+E2[48./L . 4 kLa 4 8 BT 4 kTa o 21 2 3)

J 2 2

Where COL = GLa 2 /J and COT = GT 2 /J. The first three terms in the right hand
side of Eq.(3) represent the linear contribution to the dispersion rel; ion whoareas
the last term corresponds to the nonlinear contribution.In the above calculations we
have used the continuum approximation and the slow envelope was considered as
constant in comparison to the rapid carrier oscillations.

3. DERIVATION OF THE 2D NONLINEAR SCHRODINGER
EQUATION (2D-NLS)

We consider slow modulation in space and time of a carrier wave with given
wave numbers kLc and kT. Restricting our attention to the case of a carrier wave
propagating in the x direction i.e kL, = k, and kT, = 0 we can reduce Eq.(1) to a 2D
nonlinear Schrgdinger equation by using the multiple scales perturbative technique
or consider the nonlinear dispersion relation(3). We have verified that both methods
give the same result. Under this condition we get

if(•/,, + VgLII'X) + fP/'x. + e2 P2 ,f' + e2 qIleI', = 0 (4)

where
102W 102w Ow

PA 2 ( -)ý; P2 =(-XQ= L(--);~
L T
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Considering a frame moving with group velocity VgL and using the transformation
S= X - V9 Lt,, T1 = Y, r = et, next (VgL being the group velocity in the longitudinal
direction), we transform Eq.(4) into the standard 2D Nonlinear Schrodinger equation:

it~r + pV,'( + p2okj + Q101I20 = 0 (5a)

where
P 1 = [C0LwLa 2 cos(k~a) - C0L sin2 (ka)]/2a2 w•,P 2 = CgT/2wC (5c)

=ýO E 8L sin()/2& (5d)1 2

This equation has been extensively studied especially in plasma physics, hydrodynam-
ics and optics5 . We now restrict our study to the isotropic case, i.e GL = GT = G
(CoL = COT = Co) and BL = BT = B. Proceeding as Yuen and Lake6 for their study
of hydrodynamic waves it is convenient to reduce Eq.(5a) to a 1D equation, that is to
consider plane modulation at an angle a from the direction of propagation of carrier
wave. Namely we introduce the oblique coordinate

S = ýcos a + r/sinta

Equation(5a) is then transformed into the 1D Nonlinear Schridinger equation (NLS)

iv"7. + PI'ss + Qlz',1'N, = 0 (6)

where the dispersion coefficient P is given in Appendix. Equation(6) describes the
evolut;on of the envelope 0 in the S direction of a carrier wave propagating in the x
direction.

4. MODULATIONAL INSTABILITY

Using Eq.(6) we can investigate the stability of a plane wave propagating
on the lattice. A linear analysis of a small perturbations of this elementary plane
wave solution yields a criterion of instability named modulational or Benjamin-Feir
instability. Skipping all the analytical details the region of instability is given by

0 < q < qi = bov'-Q- /P

with PQ > 0 and where q is a real wave number in the S direction. Thus a
perturbation with a wave vector 7=(q-L,qT) satisfying 0 < qL < q cos a and
0 < qT < qj sin a can trigger instability in the lattice. Here qL and qT are the
wave numbers of the perturbation in the longitudinal and transverse directions.
a is an angle defined by a = tan-'(qg/qT). The maximun instability occurs at
qLgmz = (qt/v'-)cosa and qT,.. = (ql/v/2)sina with a maximum growth rate
given by Gm,, = QV= Q,. The modulational instability criterion depends on the
sign of PQ which depends itself on the carrier wave number and on the modulational
propagation direction, for a = 0 the instability is longitudinal, for a = ir/2 the
instability is transverse. In the first Brillouin zone three cases are possible (see
Appendix) :(i)for 0 < k, < k, 2 , PQ > 0 for all a,(ii)for k, 2 < k, < k,,, PQ is
always negative, (iii) it k¢j < k, < 7r/a, then we have PQ > 0 for a < a, and
PQ < 0 for a > a,. In this last case, like for hydrodynamic waves6 there is a limiting
angle which can be calculated from model parameters.However, in the following the
influence of this limiting angle will not be examined. We will restrict ourselves to
case (i).
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5. NUMERICAL SIMULATIONS AND CONCLUSION

Now, we want to clarify the role played by modulational instabilities on the
response of the lattice to an initial homogeneous disturbance with low amplitude.
Furthemore, we attempt to elucidate the dynamics of nonlinear structures which
should appear in the long time evolution of the lattice and cannot be predicted from
the 2D-NLS model.

82 . - . * *2

62 62

)" 42

j21 21

27 54 80 106 27 54 80 106
a x b x

Figure 1. Contour plots corresponding to 42 for a - 7r/2 (full line for 4P > 0, dashed line for
41 < 0) : (a) initial condition, (b) recurring patterns at time T = 2000.

At this end we use numerical simulations which are directly performed on
the original microscopic equations [see Eq.(l)] which govern the dynamics of the
2D lattice. Specifically, we consider a lattice plane made of 106 x 82 points along
with periodic boundary conditions on left and rigth sides and on lower and upper
boundaries, as well. The initial conditions are provided by an harmonic wave carrier
traveling in the x direction and homogeneous in the transverse direction with
amplitude A, wavenumber k, and frequency w which satisfies the dispersion relation
(3) where kT = 0. This dispersion relation implies a nonzero phase velocity because a
forbbiden band exists for 0 < w < wo as given by Eq.(3) in the linear limit. We take
A = 0.35 and we have 7 periods within the longitudinal length of the lattice plane
which leads to kc !- 0.415. The simulations are carried out for the discrete sine-Gordon
system,that is with zero nonlinear coupling (B = 0). The strength of the substrate
potential is w2 = 0.09(the linear coupling G is set to the unity). In order to trigger
the instability, small(s_' 10-3) random or coherent perturbations are superposed to
the initial velocity 4D and removed afterwards.We have first checked that for a = 0
"a small coherent rrodulational perturbation the initial sinusoidal wave breaks into
"a train of envelope-solitons we recover the classical modulational instability which
occurs in 1D system. Otherwise, in the transverse case the coherent perturbation
gives rise to transverse instability; beyond this instability periodic patterns appear
which recur, in the Fermi Pasta Ulam sense, to the initial state and so on [see
figure 1].For 0 < a < 7r/2, the initial plane wave (see figure 1.a), modulated by
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Figure 2. (a)the birth of localized structures at time T = 1280, (b) moving pulsons at time

T = 4200,(c) patterns corresponding to figure 2 (b). the arrows depict the rotation gradient.

a ra~ndom or coherent perturbation, evolves into localized structures inhomogenously
distributed on the lattice. The results are collected together in figulre 2 where we
have the contour line plots for sign(f)<V. Then, as predicted by the NLS model, the
instability occurs and after a lapse of time T = 1280, the small initial perturbation
gives rise to stretched localized structures along the transverse direction. At time
T = 4200, we observe very cleary some localized structures which are ellipse-shaped

62...........................



as shown in figure. 2.b.They look like the ring solitons or pulsons obseved numerically
in 2D sine-Gordon system with different boundary conditions7 . When time further
increases, these localized structures still persist and look like stable. No recurrence
to the initial state of these structures was observed for these set of simulations.The
characteristic extends of these structures are about 10 lattice spacings in x direction
and 21 lattice cells in y direction. We attribute this anisotropy to the discreteness
effects which could be important in x direction while the continuum limit seems
to be acceptable in the transverse direction.In figure 2 (c) we have represented the
finite differences gradient of the rotation $,n,n in x and y directions. The resulting
structures present some similarities with vortex-like structures8 .

3.50,
(a)6t = 4200(b) t = 4205 (b)
(c) t = 4210
(d) t = 4215(c

F. 75- (e) t = 420

S0.00.

- f.75.

-3.50-
4.40 6.70 9.00

to, X

Figure 3. Evoluition of the profile of a typical structutre between times T = 4200 and T 4220.

The profile shows that the pulson breathes while moving in the x direction.

In order to obtain more details about the dynamics of a particular structure
we have plotted the profile, in x direction, of the structure located in the middle of
the lattice between times T = 4200 and T = 4220, the results are shown in figure 3.
It is now clear that the structure is moving in the x direction while oscillating like
a breather or a pulson. From these results we can estimate the traveling velocity of
the pulson Vgrav ! 0.55 and its circular frequency : Q •-- 0.2. It is very interesting to
note that this frequency is smaller than the cut-off frequency W0 = 0.3 : it lies in the
lower linear gap of the lattice. Finally, we note that the amplitude of the pulsons is
large and such that : -47r/3 < 4 < 47r/3, thus the (molecular) rotations overcome
collectively the potential barrier, but they do not reach the bottom of the next well.
By increasing the nonlinear coupling we can change the sign of the coefficient Q in
the nonlinear Schri5dinger equation[see eq.(5d)]. This implies that PQ can becomes
negative and the instabilities disappear as we have checked numerically.

In conclusion, our present study shows, that the complex physics of nonlinear
oscillations in extended systems such as 2D lattices allows the jumping of energy from
an initial extended state weakly excited, into local pulses. All our results indicate that
the 2D-NLS model is efficient to predict the instabilities of an initial steady state on
the lattice. Nevertheless, such a model does not allow to approach the long time
regime which is characterized by the appearance of localized breathing modes or
pulsons. The properties of these pulsons, their number and their distribution, must
be further studied both numerically and theoretically.
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APPENDIX

The dispersion coefficient P of nonlinear Schr6dinger 6quation [see Eq.(6)] is
given by

P = f(ký_).g(kc) - cos2 a] (C.1)

where

f(k ) = 4C• sin 4(kca/2) + (4C04 + 2Cwo2a2) sin 2(kca/2) (C.2)2w a 2

4CO2 sin2(kca/2) + Wta 2

4C.2 sin 4(kca/2) + (4C02 + 2w0a2) sin 2(k~a/2)
2 / 2+ Iwo.a4 + 4C.w a2

For g(kc) > 1 i.e kc < kc, = -sin-'v P is alwaysa (V4C02-Pislwy

positive. Otherwise if k, > k,,, then P is positive for a > ac and negative for a < a
where a, is given by

S ( 4C sin 2(ka/2) + 2  (C.4)c co- COS V.4C~o sin 4 (k-a/2) + (4Co + -a2) sin2 (kca/2)

Let us define the critical wave number k, 2 for which Q becomes zero. Q is positive
for kc < kc2 and negative for kc > kc2 . kc2 is given by

2!si- Jw02a 4 1
kc 2  -2 sin1 1 9-•w 4  (C.5)

a 1 96BL1

In the first Brillouin zone [0, 1], we deduce that if 0 < kc < k, 2 then PQ is positive
for all angles. If kc2 < k, < kcj then PQ < 0 for all a. If kci < kc < vr/a then we
have PQ > 0 for a < ac and PQ < 0 for ce > cf.
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I. Introduction

The soliton theory in mathematical physics has been generally established for spa-
tially one-dimensional(1D), continuous systems except for a few exceptional cases such
as the Toda lattice.' Underlying concepts are the inverse-scattering-theory formalism,2

the Hirota bilinear form using the D-operators,3 the Sato r-function theory ' and so
on. An open question and issue are whether or not the concepts developed in mathe-

matical physics and mathematics are equally applicable to realistic problems in physics,
such as higher dimensional continuous systems, discrete lattices, solids, small molecules,

macromolecules, etc. and biological systems. In field theory, finite-energy, stable lo-
calized classical solutions of nonlinear differential equations have often been identified
as solitons,5 , while nonlinear differential difference equations in solid state physics, bio-

physics and biochemistry have been reduced to differential equations by using the con-
tinuum approximation to get solitons.

On the other hand, recent studies on the vibrational properties of perfect anharmonic

crystal lattices have shown the existence of stationary (immobile) localized modes above
the top of the harmonic frequency band.6 For ID lattices with the hard quartic anhar-

monicity, approximate analytical calculations and numerical experiments Ls have been
performed to show the existence of moving anharmonic localized modes. Also shown
are the existence in d-dimensional lattices of exact analytical solutions of moving an-
harmonic localized modes for specific nonlinear exciton transfer problems.' It has been
shown that some of the moving anharmonic localized modes in these cases look like
solitons under favorable conditions.

Generally speaking, solitons in solids, molecular and biological systems, if any,can

be considered as nonlinear, particlelike collective modes born out of a nsea of small
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amplitude atomic or molecular motion,in which a large number of quanta are involved.
Then, questioins are: (a) what are natures of quantum states of solitons obtained as
classical solutions in nonlinear physics. (b) how the classical solutions emerge from
quantum states? (c) what are associated quantum fluctuations?

The purpose of this paper is threefold: (A) To introduce a concept of anharmonic
localized modes originally motivated in solid state physics into the soliton theory to
obtain solitonlike nonlinear modes in discrete systems, such as lattices including higher
dimensional cases, molecules,and biological systems. (B) To apply a coherent state
path integral formalism to study the concept of solitons in strongly nonlinear quantum
systems. (C) To study vibron soliton problems 10 in dynamical self trapping problems
in polypeptides 11 and molecular crystals "2 from the viewpoint of anharmonic localized
modes.

II. Stationary Anharmonic Localized Modes

First,we illustrate an anharmonic localized mode, put forward by Sievers and the
present author in 1988 6, by studying its simplest form for stationary modes. Let us
consider a perfect anharmonic lattice with harmonic and hard quartic potential governed
by the equation

ii,i(z)X=-EJ 2(X, xI)u(Xl)- E J4 (x, XI,x 2, X3)u(Xi)u(x 2)u(X3). (1)
•1 •1 ,X3,X3

with
J2 (X,X1) = K2 (x,x1)/M, J 4(x,x1, x 2 , x 3) = K4(x, x1 ,x 2 , X3 )/M, (2)

where, us(n) with z = (n, a) is the a component of the displacement from its equilibrium
position of an atom with atomic mass M at an nth lattice site. The K2 's and the K4's
are the force constants derived from the harmonic and quartic potentials,respectively.
We look for stationary vibrational modes of the system by setting

00

u(x) = 2 E cos [(2p + 1)wt] Op(x), (3)
P=

1

where the Op(x)'s are profile functions of the modes with frequency (2p + l) , all
of which are assumed to be independent of time variable t. For simplicity, we use a
rotating-wave approximation (RWA) from the outset to obtain

Ok(x) = 3 E G(x, X'; w)J 4 (x', XI, x 2 , x 3 )(•l(Xl)( 1 (X2 )• 1 (X3). (4)
XI ,X2,-T3

Here

is the lattice Green's function fcr the harmonic lattice, in which the w(P)2 and the
ý,(x)'s are the squared-frequency eigenvalues and the corresponding eigenfunctions,
respectively, characterized by the index p for the harmonic lattice. Close similarity of
Eq.(4) to eigenvalue equations for harmonic localized modes due to an impurity 13 is
noted. It is shown that Eq.(4) exhibit localized mode solutions with eigenfrequencies
outside the harmonic frequency band w(p) under certain conditions.

Analytical solutions to Eq.(4) can be obtained by considering the extreme localization
limit for a mode lying far above the top of the harmonic frequency band. The result for
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a d-dimensioinal simple cubic lattice with the nearest neighbor harmonic and quartic-
anharmonicity force constants, K 2 and K 4 , is given by

2dA 2 [ 1  ý+3 2~ (1 I 1
MI 2d J2  1 2+ d , (6)

uO= a, ul = -(1/2d)a. (7)

Here we have taken the central position of the localized mode at the origin of the
coordinate, in which uo, ul, and a are the displacement of the atom at the origin, that
of its nearest neighbors and the amplitude of the localized mode, respectively. It is
also shown that the amplitude of higher harmonics with eigenfrequencies 3w, 5w,... are
much smaller than that of the fundamental mode with eigenfrequency w.

Because of the formal generality of Eq.(4),the ubiquity of the existence of stationary
anharmonic localized modes in nonlinear lattices including higher dimensional cases can
be seen. By suitable re-definition of the Green's, Eq.(4) is also applicale to molelcular
systems.

III. Moving Anharmonic Localized Modes and Solitons

The existence of moving anharmonic localized modes in a specific form of Eq.(1) for
a ID lattice with nearest neighbor interactions can most easily be shown by introducing
the relative displacement

V. = u.+ 1 - u. (8)

to write the equation of motion in the form

i•.(x) = J2 (v.+, + v._. - 2v.) + J4 (vn+i + vn._1 - 2v, (9)

where u, =_ u(n) is the displacement for the ID case,and J2 and J4 are the nearest
neighbor harmonic and quartic mass-reduced force constants, respectively. We use the
RWA and look for solutions to Eq.(9) in the form

v. = 20ncos(kna - wt), (10)

where O,, k, w, and a are an envelope function which is also a function of t, wave
number, frequency and the lattice constant of the system, respectively. Inserting Eq. (10)
into Eq.(9), we obtain a pair of equations for the coefficients of sin(kna - wt) and
cos(kna - wt) :

J2 sin(ka) t2+ + + 2_1ý.= - JO.+, - O._,) I + 3A(€•+, + On+,€._, + (11)
2w I j2j

4. - On¢. = J2 [cos(ka)(O.+i + €.-1) - 20n]
+3J 4 [cos(ka)(O'+, + O_ - 2¢0'. (12)

Approximate analytical solutions to Eqs.(1l) and (12) can be obtained by noting that
the sech function,

On =_ C sech [K(na - Vt)] (13)

is an exact solution to both of the equations

1n J sin(ka)(n,+1 - 'n-i), (14)1+2 2(12
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-wd,,-J 2 cos(ka)(O.+, + 0~,.-1), (15)
1+ 0

with
C = (+1)In sinh(K a), (16)

V = ±(2/K)J 2 sinh(Ka) sin(ka), (17)

w = E :F 2J2 cosh(Ka) cos(ka). (18)

In the above equations,E and K are a constant and a parameter, respectively. Then,

it is a straightforward matter to show that approximate analytical solutions to Eq.(9)
can obtained as follows

-v = 2(±)Inl /6J• sinh(Ka) sech [K(na - Vt)] cos(kna - wt), (19)

with
a2 = 2J 2 [1 :F cosh(Ka) cos(ka)] + K 2 V 2, (20)

V = +J 2 sinh(Ka) sin(ka)/hKw. (21)

In the above equations, the plus and minus signs correspond to the modes appearing
below or above the squared frequency band

U2 = 2J 2 [1 - cos(ka)] = w(k) 2  (22)

of the harmonic lattice. In the former case, the upper limit of K exists to ensure that
W2 > 0. It is clearly seen that envelope lattice solitons given by Eq.(19) are moving
anharmonic localized modes lying outside the harmonic squared frequency band w(k)2 .

It is noted that the result obtained above for the mode lying below the squared

frequency band reduces, in the lim k - 0 and w -- 0 and for small K at the same time,
to conventional pulse soliton solutions

vn = ýj4Ka sech [K(z -Vt)], (23)

J4
with

V = Co [1 + (K2a2/12)] 1
/, (24)

obtained by using the continuum approximation to Eq.(9). It is therefore seen that the

moving anhaxmonic localized mode contains the conventional pulse solitons reducible to
those governed by the modified KdV equation in an asymptotic limit.

Original equations for the displacement field u from which Eq.(9) is derived, is of the
form

ii = J2 (u.+, + u--I - 2un) + J 4 [(un+l - Un )
3 

- (Un - Un--1)
3] (25)

Using the same procedure as before, we can show that approximate analytical anhar-
monic localized mode solutions to Eq.(25) are of the the form

u, = 2(±-1)'nl(1/D) sinh(Ka) sech [K(na - Vt)] cos(kna - wt), (26)

where
D = (12J1/J 2)[1 - cos(ka)], (27)

with k and w satifying entirely the same form of equations as Eqs.(20) and (21). Equa-

tions (26) and (27) are a different type of moving anharmonic localized modes from
those described by Eq.(19). In particular, the result obtained here for the u-field does
not reduce to the conventional pulselike soliton solution in the lim k -* 0 and w -- 0.
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Owing to the approximate nature of the analytical solutions so obtained, these results
should be tested by numerical experiments. This was done for various values of K and
k. The result obtained here for the modes appearing above the squared frequency band
w(k)' may be summarized as follows: (1) Smooth and very stable propagation of a
localized mode for small K in both cases. (2) For both of small and large values of K
for the u-field, solitons emmerge from collision processes with their identity preserved.
Thus, moving anharmonic localized modes for the ID anharmonic lattices governed by
Eqs.(9) and (25) can be identified as solitons under favorable conditions.

The concept of anharmonic localized modes appearing outside the squared frequency
band of the harmonic lattice provides us with a wider view of solitons as compared with
that in the conventional soliton theory. By such a concept characateristic to the solid
state physics, we may gain a clue to seek another kind of solitonlike nonlinear modes,
stationary or immobile and mobile, to higher dimensional lattice systems, disordered
lattices, molecular systems, biological systems, and so on.

VI. Quantum Mechanical Concepts of Solitons. Path Integral Formulation

It is seen from Eqs.(19) and (26) that the solutions for moving anharmonic localized
modes contain the quartic-anharmonicity force constant K4 in the denominator. This
shows that solitonlike modes in quantum systems are unattainable by the conventional
perturbation method. Generally speaking, solitonlike modes can be considered as large-
amplitude collective modes with which a large number of quanta are associated. One
of good candidates for quantum states for such highly excited states is coherent states
characterized by the indefiniteness of the number of relevant quanta 14 .

Let us consider a many-boson system the Hamiltonian H of which is given, in terms
of a set of creation and annihilation operators, {a,,} and {at }, specified by indices v as

H = !({at}, {a.}). (28)

The boson coherent state IA) of the system are defined by 14,15

IA):llexp (--2 expo(aal10), (29)

where the symbol 10) denotes the vacuum state of the boson system, and o,, is a comm-
plex quantity. By using the well-known completeness relation of the coherent states,14'15

the functional integral representation for the matrix element of the evolution operator
exp(-iHt/h) between an initial state jA,) and a final state lAf) can be written in the
form 16,17

(A, lexp (-iHt/h)I A,)

J D(A) exp [(i/h,) IJL ({aj,, {aZ}, (&.,I, {a}J) dt], (30)

with

L = I ,,oih -a i - - (A IHI A), (31)

in which
(A IHI A) = HN({a)}, {f a}), (32)

where HN({ot:,},{fa}) is the normal ordered form of H H({a,},{o,}), and the
symbol D(A) denotes a sum over all paths moving forward in time t.
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Without any approximation procedure, the formal result using the coherent state path
integral method is of little practical use. A working procedure is the stationary phase
approximation combined with the use of the Hubbard-Stratonovich transformation. 18,19
Here we illustrate the simplest stationary phase approximation 6S = 0 to obtain

ihdat_ = (A IHI A) and c.c. (33)
dt aan*

Let us apply the above result to the quantum dynamics of a phonon system. Let u(x)
and p(x) be a c-number form of the displacement and the momentum of an atom at the
site x = (n,a) (cf.Eq.(1)). Then, Eqs.(30) are equivalent to

•u(x) 8 e(H) 9p(x) 9 (H)

Ot = pAX) at - Ou(x) (34)

where (H) is the diagonal coherent state representation of H. Equations (33) or (34)
constitute a basis for a theory of vibron solitons developed by the present author 10

V. Vibron Solitons in Polypeptides

Let us illustrate how the concept of anharmonic localized modes and that of the
coherent-state-based path integral 17 can be applied to the dynamical self-trapping of
amide-I vibrations by acoustic phonons on hydrogen bonding in polypeptides. Let us
assume that the representation (H) with respect to the boson coherent state of the
Hamiltonian H for a vibron-phonon system that we study is given by

(H) = Hvib + HPh + -Hint (35)

with

"Hvib (L'2 + \ L 2 q) L(n, m)q.q,m, (36)nvl = 2A "-2-" - 2 n,,,,

Hplh = • + V (u,•+ý - U,,)], (37)

Hint 2 q (UI - un) + T-qn (u - u,-1)] • (38)

Here Hvib is the Hamiltonian of vibrons simulating a set of amide-I oscillators in a
polypeptide chain,in which qn, P. and L(n, m) are the displacement of an nth oscillator
with eigenfrequency w0 and effective mass p from its equilibrium position, its momentum
and the coefficient of the dipole-dipole interaction energy between the n and m oscil-
lators, respectively. The quantity Hph is the Hamiltonian for an anharmonic phonon
system simulating longitudinal acoustic phonons in the hydrogen-bonded polypeptide
chain, where u,,, P,,, and V (un+I - u,) are the displacement of an nth molecule (peptide
unit) with mass M from its equilibrium position, its momentum and the intermolecu-
lar potential energy, respectively. The potential energy term in Eq.(37) can be well
approximated by the Morse potential function 2o

V (Un+I -- Un) = U0 11 - exp[-Pl (u.+, - u,,)]}, (39)

where U0 and fi are constants. The quantity Hint is the Hamiltonian describing vibron-

phonon interactions, where Ak are interaction constants.
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From Eqs.(34), equations of motion satisfied by q. and v = U+- u4n are written as
the

"3n

+ A+vnqn + A-vn.-q. = 0, (40)

Mý. - [f(vn+l) + f(vn._) - 2f(vn)]

2~ [A-. (qn+ 2 + q- 2q.+, ) + A+ (qn+ 1 + -2q)J . (41)

In Eq.(41), f(v.) = -dV(v,)/dV, is the intermolecular force. We take an approximate
analytical solutions to Eq.(41) to be of the form

f(vn) = -D(A+q 1 + A-qn), (42)

where D is a constant. Inserting this into Fq.(40), we obtain

q,. + W02q. - I Z L(n,m)q -- - y2(q2+1 + q-)q, = 0, (43)

where
71 = D(A' + A _)/p, y2 = DA+A_/p. (44)

As in the case of Eqs.(9) and (25), we seek solutions to Eq.(43) in the form of Eq.(10).
In doing this, we assume that the L(n, m)'s are nonvanishing only for nearest neighbor
pairs. Writing the nearest neighbor interaction constant as L,setting J = L/p and using
the same procedure as before, we obtain a pair of equations

€n Jsin(ka) (0.-¢._1 *1 + 272 cos(ka) (.+1 + +n_ 1)•)n. (45)
2w J '

{(U )02 2 03- •, -Y2 (02+ý + 02_1)*
)O + 3-j n n O

= J cos(ka) k+1 + jn- co+ ka) + n . (46)

These equations are similar in form to Eqs.(ll) apd (12). Thus, using the same
procedure, we obtain approximate anharmonic localized mode solutions in the form

= 2A sinh(Ka) sech [K(na - Vt)], (47)

with
2 = -2J + V W248w wo - 2J cosh(Ka) cos(ka) + K 2 V2  (48)

V= J sinh(Ka) sin(ka) (49)Kiw

where

47 2cos(ka). (50)

The obtained result represents vibron solitons 10 having the form of lattice envelope
solitons with eigenfrequency appearing below the linear vibron frequency band

w2 =2 - 2Jcos(ka) = w(°). (51)
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In terms of
0- )2, (52)

the binding energy EB of the vibron solitons is written as

EB= h w(Q()v .O h(w) (53)

The corresponding solutions for the phonon field is of the form

f(v) = -B sech 2 [K(na - Vt)], (54)

where B is a constant,and we have used the RWA. In accordance with Eq.(39), we take

the leading term in f(v) to be of the form
12

f(v) = K 2 v - K3v, (55)

where A 2 and K 3 axe harmonic and cubic-anharmonicity force constants, respectively.
Equation (54) is consistent with Eqs.(41), (42) and (55) at least for small K.

Equations (47),(48) and (49) clearly show that the dynamical self-trapping of vibrons
by anharmonic acoustic phonons in polypeptides can be regarded as anharmonic local-

ized modes.
The results obtnained above are supplemented by those obtainable from the contin-

uum approximation to Eqs.(40) and (41). Here we present only the results of calcula-
tions,

= (A+ + A_)B

2U - (56)
K = V23 (57)

= c- (~A+ + A_)Mc2 (58)
V : 4KaM (58

B= + () 2 +3 A+ A A2 ', (59)

Bc = 3(V 2 
- C)MU

2Aa 2  
' (60)

where
La2  K-7a2

c1 = - and c2 = M ' (61)

are the velocity of vibrons and that of the acoustic phonons, respectively.
Using numeraical values of relevant physical parameters derived from the numerical

data by Pierce 20, we obtain the following numerical results for polypeptides

w0 = 3.7 x 10-2 0 J, cl = 1.6 x 10 4m/s, c2 = 4.6 x 103 m/s,

V = 5.7 x 103m/s, AJL =- - 1.8 x 10- 22J, EB = 1.5J. (62)2pw0

The above results suggest a possible existence of supersonic, rather than subsonic,
vibron solitons in polypeptide systems.
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VI. Concluding Remarks

The concept of anharmonic localized modes is an approach to the soliton problem
from the standpoint of solid state physics. Here, solitons are regarded as iocalizod modes
appearing outside the energy or frequency band for linear or harmonic part in the prop-
erties of systems induced by their intrinsic nonliuearity. Such a concept is particularly
useful to study solitonlike modes in discrete lattices, molecular systems and biological
systems including higher dimensional cases. By their naturethe anharmonic loc•dized
modes are divided into two types, stationary or immobile and mobile. The former is
characterized the ubiquity of their existence, while the existence of the latterwhich has
been shown to possess close similarity to conventional solitons in mathematical physics,
appeals more restrictive. By its nature, the concept of anharnlonic localized modes
may provide us with a wider view of solitons in solid state physics, chemical physics and
biophysics as compared with that of the conventional soliton theory. It. is particularly
usefid when considering solitonlike modes in discrete 1D and higher dimensional systems
inchtding small and macro molelcules and biological systems. It is noted in passing that
breather modes and envelope solitons in the soliton theory can be naturally understood
as a kind of anharmonic localized modes.

In the theory of anharmonic localized modes, emphasis has always been placed on
physical aspects, rather than mathematical aspects, of the problem with particular
attention paid to discrete systems. The cost of the utility and the ubiquity of the concept
is paid by the difficulty of attaining mathematical rigor and beauty in many cases, lit
addition to applying its concept to real physicalchemical and biological problems, much
therefore remains to be done to develop its mathematical aspect.
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QUANTUM HOLSTEIN POLARON MODEL

AND CLASSICAL CHARGED GAS ON A RING
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A great many techniques have been developed so far for solving polaron problems.
Frequently used analytical approaches, in the context of the Fr~hlich model, Holstein model,
and Davydov model, are variational methods [11, perturbative treatments [21, and Ansatz
methods (3]. Great success has been achieved in obtaining accurate results for such physi-
cal quantities as polaron energy and effective mass, e.g. by Feynman's variational method
for the Frbhlich polaron problem. There are however still some subtle issues that need to be
made clear. To list a few from the author's interests: a) How abrupt is the self-trapping tran-
sition?' b) Can the translational symmetry be broken due to the self-trapping? c) How does
one describe the polaron dynamics at general temperatures? Numerical simulations, such as
the Quantum Monte Carlo method [41, can provide us in principle, with exact answers
within error bars for certain physical observables. However, there are still many difficulties
in obtaining definitive answers these problems.

In contrast to conventional routes, this paper approaches the problem rigorously by
reducing the fully quantum problem to a classical one. It is hoped that this alternative
method may provide insights which are hard to obtain from conventional perspectives.

As a special class of polaron problems, the Holstein model describes the motion of an
electron in quasi-one-dimensional materials coupled with optical phonons of the crystal [2]
(molecular crystal model). This paper focuses on the Holstein model due to the apparent
simplicity of its Hamiltonian and the richness of its physical phenomena. It is shown that
the Holstein model is thermodynamically equivalent to a problem of classical charges on a
ring. Some of the above mentioned questions can thus be reduced to find the phase diagram
of the classical charges. The polaron energy band, effective mass, and polaron conductivity,
for example, can be expressed as some averages over the grand canonical ensemble of the
charges. Many of the formal relations derived in the current paper can be generalized
straightforwardly to other types of phonons and higher dimensions.

iFeynman's answer for the Fr6hlich polaron problem in continuum is smooth transition rather
than sharp transition, however, there is no reason to believe that the discrete polaron problem
behaves the same as the continuum one. Most of the results obtained in this paper are direct
consequences of the discreteness of the Hamiltonian.)

Fsture Directions of Nonlinear Dynamics in Physical and Biological Systems
Edited by PL. Christiansen et al., Plenum Press, New York, 1993 213



The Hamiltonian of the Holstein polaron model in one dimension (l-d) is given by
H -- - t (A,,A3+1 + AA+A.) + XY' e- (B+ + B + + .BB. (1)

Here A.+ (A.) is the electron creation (annihilation) operator on the n'1 site of a N-site chain.
B+ (B,) is the optical phonon creation (annihilation) operator at the nh site transformed to
Fourier space. All energies are measured in the unit optical phonon quantum ft.

The Hamiltonian (1) is invariant under discrete translations, so that the total crystal
momentum is conserved. One can then transform H into momentum sectors (labelel by the
total crystal momentum quantum number k) with a unitary transformation U = e- [5,6],where X •nA,*A, is the electron position operator, P u qB4 B1 is the phonon crystal
momentum operator. In terms of the transformed variables, the new Hamiltonian is given
by

H = Htatat , Rh n -2t _cos(P - k) + Ijbq~bq + Xl"(bq+ + bq). (2)
k k q q

Here ak are the "dressed" electron operators in Fourier space, i.e. the Fourier transform of
A.e ; bqaB e-qx are the "dressed" phonon operators. It is interesting to note that if one
starts from a dressed electron eigenstate with arbitrary initial phonons, the dressed electron
remains in its momentum Cigenstate without being scattered by the dressed phonons. In par-
ticular, if the phonons are in eigenstates with eigenvalue Ek, then Ek are the exact polaron
energy band levels.

When there is only one electron present, the partition function becomes the simple sum
of phonon partition functions of each momentum sector.

Z = TreO= Zk, Z. a Tr,,e .E =lBiIn(Zt) (3)
kP-1,

Thus, by computing the partition function Zk, one can find the polaron energy band Ek. The
trace over phonon TrP can be evaluated by employing the functional integral over coherent
state variables 13 provided that cos (..) term is properly normal ordered. The partition func-
tion ZA can then 1e obtained as [7]

Z, fn 9; P.! P,e-T' •p (4)
q

3,(p ,} -t Y, e-_"e•':p + XB.(P + P-O) + o•q.o (5)

q
Here by definition, * e'14-1.

The nonlinearity of the polaron problem is displayed in the nested exponentials in (4)
and (5). In order to eliminate the functional integrations over P,* and Pq, one can expand
the first exponential

exp ,l dxYee]= t!.t'.If., Yei e (6)0 o S-.t Z0 jd . dZe-

Now the phonon action is expressed in terms of bilinear forms, meanwhile, n charge vari-
ables have been introduced for the n"' order Taylor expansion. One can then carry out the
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Gaussian integrations over all P.* and P. and obtain [7]

t- M P

Z0 nZ"~~.LdItr e (7)

Here ZPh is the free phonon partition function given by ZA -(1- ep-. The definition
T. =u , lej is used. The quantity -Alx~e) can be regarded as the action of n classical
charges on a ring of length 0 with charge e, located at xi. Given the ordering of the charges
on the ring, 0<x ..<r,<0. the action -A (x.e) can be written as

A {xx) a 2s n• • Jj + A ej., (8)

where s a N 2 by definition. Axrj is defined as the distance from x, to x. in counter-
clockwise direction on the ring, Oij and A (e) are independent of the coordinate of the
charges but dependent on the charge distribution (e). With the definition of e2 • as the
Y..qeg, where the sum is in counter-clockwise direction from e,. to ej on the ring, one can
obtain

e•1 * e;.,,T_) + o(-•.,JE,,) - em'-.,•,4) - O(4,._,'), (9)

A {) * S [(~)(ePI2+W.;rei)+ ~(~,,
Ae z 2sinh(+2) Ii. + e-IjOn.eT.)10)

0(ý..',.) - (1 - e4 )k6Pr.X.')e-P . 011)

At low temperatures, where e1 o 1, the classical action can be simplified as

(,.,jr.) = 8(e.,J) , A {xe) = s(13-n) + 2se-AJOjj (12)
j,.

The sign of the interaction among the charges is determined by the factor 0,j.

Recalling the definition of the grand canonical partition function in statistical mechan-
ics, one can regard E:0... as the sum over all the canonical ensembles with n charges,
and regard - as the sum over all the charge distributions. Thus both sums give rise

to a grand canonical ensemble for the case of k=0. From this perspective, one can define a
grand canonical partition function as

- AD PA
E Fd,.Jx Y, e t- Y, f dx ..Jdx. eA~~ (13)

where the hopping integral t behaves as the fugacity of the grand canonical ensemble, and
inverse temperature P behaves as the volume (length of the ring) within which the classical
charges exist.

Physical observables can be written as thermodynamical averages over the grand
canonical ensemble defined
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<Q> £=o O., ,.4 (14)
SJx.fx.e,,

8,0 c1..16 0 1.-n<0

Due to the fact that all e's are summed symmetrically with respect to inversion e -f -. , one
can replace c"rk-- coa(ek), such that the partition function for the k"' sector can be written
as

Zk = <cos(r. k)>eZkh. (15)

The polaron energy band levels can be found

E£ - Eo = -n<cosk)>. (16)

The polaron effective mass can also be obtained similarly

1 =a>. (17)
2m

The simplest approximation one can make is to ignore the interactions among the
charges. The partition function can be calculated easily in this case, so that the polaron
band can be found as Et = 2te 'cos(k)-s, which is the well-known Holstein small polaron
band. However, this approximation (trivial here) cannot describe the behavior of the classi-
cal charges in general, eppecially since as can be shown that the interactions between the
charges are often attractive. This attraction can result in dramatic changes in the polaron
band in comparison with the small polaron band [7].

In summary, it is demonstrated that the finite temperature partition function of the Hol-
stein polaron model can be expressed as a grand canonical partition function of a 1-d classi-
cal charged gas on a ring. Thus the two systems are thermodynamically equivalent. It is
shown that the interesting physical observables of the original problem, such as the polaron
energy band, effective mass, and polaron conductivity, can be expressed as thermodynamical
averages in terms of this classical grand canonical ensemble. The generalizations to multi-
electron/polaron systems and higher dimensions are shown elsewhere [7]. The form of the
interactions among the classical charges is derived rigorously at arbitrary temperatures. The
classical charges interact with each other via an exponential interaction with a constant
coefficient, which depends on the charge distribution. In the case of the trivial free particle
approximation, the current formalism gives the well-known Holstein small polaron band
result. Numericd simulations of the grand canonical classical charged gas are underway.
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In this note we comment on the 'quantum Ablowitz-Ladik equation' and

on its solutions referred to by Alwyn Scott (ACS) in his paper . We show

how both the equation and its solutions are related to the new so-called

q-bosons and thus to the quantum groups. In his paper 'There's more than

one way to skin Schrddinger's cat'I presented at this meeting, his 60th

Birthday Celebration meeting, ACS reminded us that it was possible to

get, rather easily, numerical values for the low-lying energy eigenvalues

and elgenstates for both integrable and non-integrable quantum models

providing a number operator N commuting with the Hamiltonian H,[N,H] = 0,

could be found. Amongst the two quantum Integrable models in 1 + 1

dimensions he discussed was the quantum Ablowitz-Ladik equation (or
2quantum difference differential nonlinear SchrSdinger model

-18/8t Bn = (Bni+Bn +i)(M + I G Bnt Bn) - 2B (1)

now written in our notation2 in terms of the operators B ,B for
n nconvenience of reference. The model was introduced in Ref.3 and the

Bethe equations derived through the algebraic Bethe ansatz of the quantum
inverse scattering method (QISM) were given for it later. ACS was

concerned to compare, for two integrable models, the results of the QISM

with those obtained through the 'standard number state method' (SNSM)

which uses only [0,N] = 0. The A-L system was one of these two

integrable models (the other was the dimer of the discrete self-trapping

equation1).
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ACS also commented on the 'quantum discrete nonlinear Schrodinger
t Ot]

model' which is -i8/at 0n= 0n+t+ 0n-1+ z 0n non with [0n. = 6nm

and is not integrable (the appropriate integrable model here is the
2

lattice bose gas ). The quantum A-L model (1) is integrable 2 . The

coupling constant iG In (1) is the coupling constant 7 used in Refs. 3,4

as described by ACS, and the B n,Bnt (ACS uses bJ, b t) satisfy unusual

commutation relations namely

B n B t I = [Bn ,BMI = 0; [Bn.Bm = (1 + 2 TG Bn Bn r(2)

Kulish3 gave these commutation relations as well as the number operator
= n (1 + ½ 1G BntBn)/tn(i + j 7G) " (3)
n=1

With the commutation relations (2) the Hamiltonian ft for (1) is

tt
[Bnt(Bn~i+B) - 2tn(i + I TG Bn Bn)/tn (1 + G)] 4)

n=1

taken under periodic boundary conditions (b.c.s) so that n + f a n: [H,N]

= 0 and the system can be solved for its energy elgenvalues and

elgenstates by the SNSM.

Each single site number operator Nm =en(l+ TBm B Bm)/n(l+

VG) has eigenstates In>m : Nmln>m = nln>m and the n are non-negative

integers: the vacuum state I0>m has BmIO>m = 0 and

Bmtn>m = %/2[(l + j ,)n+l - 1]/7GIn + 1>Btlm [1 + , ,) _

Bm In>m = 2[( + - 1/GIn -l>m. (5)

In his talk' ACS compared specific solutions of the algebraic Bethe

ansatz (QISM) for equation (1) with solutions found by the SNSM. For

fixed n, and f even, the QISM gives n-particle eigenenergies in the form

En, j = 2n + ( 2 /7G)(Maf- + a 1f). The a's are found through the Bethe

equations and depend on the index j. For n = 21 ,E = 4 - (1 + t-

- CJ-1(I + t) where the C are roots of C f+2- gg2 + t 0 in which

t is an fth root of unity, t = exp(2nik/f), and (for n=2) the pairs of

roots are related as <i i = t. In the case f = 4 with n = 2 there is an

8-fold degenerate set of energies E 2 ,j = 4 (J = 1 ... 8) and a 2-fold

degenerate set E 2,j = 4 + 2V4 + F •G (j = 9,10). The 10 possibilities J
will arise by assuming ' that the n particles are placed on f sites as

bosons; but the algebra (2) is not a boson algebra, and we remark further

on this energies count below. These results from the QISM were compared

with those found by the SNSM (primarily found in this case for f odd)

with some advantage to the SNSM where for f odd one needs only to

diagonalise an j(f+l) x j(f+l) matrix. For the QISM, numerical solutions

could be found relatively easily for f < 8 and n < 7. On the other hand

while n = 2 and f arbitrary is easy by the SNSM, n > 4 and large f is

also not convenient 5 by the SNSM.
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Our interest in the A-L system2 has arisen in a rather different

way. ACS et al. 5 recognise the 'funny bosons' (ACS's phrasingI), which

have the commutation relations (2), as 'deformations' (namely as

deformations of Lie algebras6 to the so-called 'quantum groups'). Our

interest has arisen directly from a study of the properties of the

q-bosons (algebra (2) is a q-boson algebra2 ), and of the position of the
2.6-10q-bosons within the general theory of the quantum groups . Vitiello

in his paper 'Squeezing and quantum groups' illustrated some of this

same aspect. Our interest has also concerned the thermodynamics of

q-boson models 12 and so with the case of very large f-values - namely

f -4 c in thermodynamic limit 2 ' 1 °' 1 2 . Only the Bethe Ansatz, the QISM, or
13their generalisations , are currently available for this purpose as far

as we know at present.

The q-boson algebra is a group contraction of the quantum group

su (2)2,6-10, it follows from the Primakov-Holstein transformation for

su (2) 7-1, and it is a natural q-deformation of the Heisenberg-Weyl
q

algebra for ordinary bosons. The algebra is

1 -N nt] t t t
aa qa a =q [Nna = a , an =(a ) (6)anan q n nann n

with other operators for different n,m commuting. This becomes the

algebra (2) through
-•N niN n- 1) t }

n qNn a = a nnq , B n = (B)t (7)
nn n n n

with -(1 - q2 ) = G on the Fock space (8). We shall use q = e T with

7 > 0 and q real and > 1 in this note. This confines us to the

'repulsive' case of (1) and there are no quantum soliton solutions. The

'attractive' case obtained through q = e i is, in effect, described

In 9 ' 10 . Evidently 7 -> 0 (q 4 1) reduces (6) to the Heisenberg-Weyl

algebra.

The q-boson algebra (6) has a representation on the Fock space

formed from the q-boson states In> m, m = 1,...,f defined above equation

(5). The normalised state vectors are then

Io> = 10>m, In> = 1 In>m Ti (UnmM!) (am o> . (8)
m=1 m== m=1

The notation is now [n]! a [1].[2] .... [n] and [n] a (q n_q-n )/(q-q l). We
9call [n] 'the box notation' for n defined this way . On this Fock space

111 one proves

a a=[Nn, anan = [Nn + 11 (9)•n n n n

in which the box notation is extended to operators. In terms of ordinary

boson operators b n,b nt, with [b n,b m = I ai a representation of the
a,a and Nn is
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a{n + b n ant (a ) N = bb N (10)

nn
In this representation the Fock space (8) is identical with the Fock

space for f ordinary bosons. In this way we could be concerned in the

energies count (see above) with the p ways n bosons can be placed on f

sites. However, the QISM actually works with a Pauli principle on the

creation operators of the theory, and the issue is then whether the fth

roots of unity to be associated with each root A of the Bethe equations

(13) below can be identical or not. ACS et al.1, show they can be equal

for f - 4, n = 2 : we have shown the same for f = 2, n = 2. This

situation could be important to the thermodynamic limit f w = if it

actually occurs there, a situation we are investigating.

There is also the number phase representation for the q-boson
alg ) [Nmn] ia en(Nn]) ant = {an)t" In thisalgebra (6) : INm0nI= 1 8 rm and a n = I n1 n ( nti

way we can show that the Hamiltonian (4) of the A-L system is, upto a

factor of one half, equivalently
-I -i{ n O- i~l

Z n e 2ni+ h.c - 2 N n
n=1

-27N n -27
with Zn a (l - e n)/(1-e-) . It is also clear, from (3) or from

(9), that with H from (4) conveniently taken as 2 H = - ( {(BnBnt +

-i n=1 -
h.c.) + 7 ln(1 - Q Bn B )} with an extra factor j and Q = (i-q-) (s

(1-e -27))

f (BniBnt + h.c. - 2Nn), (12)
n=I

our 'q-boson hopping model' 2 . Thus (upto a factor of 2) the

elgenenergles found by ACS are eigenenergies of the two other models (11)

and (12) and the eigenstates found by ACS are elgenstates of these

models. It would be interesting and even instructive to apply the SNSM

to both of (11) and (12) directly - since each model has a commuting

number operator N.

Our solution of these three models (4), (11) and (12) is a QISM

solution depending on the roots of the Bethe equations
-127A f n

e = T exp{i${AC-Aj)} , (13)

in which the 2-body phase shifts are O(W) = 2 tan- ((tan Ay)coth 7). For

chemical potential p, the n-particle elgenenergies are
n

(2 sln2 ('A) - i) = (1 - cos(23,A) - •). (14)

For fi 0 this expression can be identified as 2E = 2n + 2 G(aif- +

ac_.f) as given by ACS and colleagues . The Bethe equations (13)

become their Bethe equations by iA1 -A t, 7 - 7 - 1 where 27) m tn(1 +
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-yG. We also find an explicit solution of (13) for y 4 a for any n and

2
f.

The Bethe equations (13) and the n-particle energies (14) were

found2 by a limit A 4 w on a more complicated q-boson lattice model 9 '1 °.

This more complicated lattice model replaces the ordinary bosons of the

lattice bose gas model by q-bosons" I°. The Hamiltonian remains local,

but it depends on the real parameter A, and involves interactions between

four nearest neighbours. The Hamiltonians (4), (11) and (12) found

through A - w Involve only nearest neighbour Interactions. The q-boson

hopping model (12) looks particularly simple. But it is a hopping model

for the (nonlinear) q-bosons. It is linear in terms of ordinary bosons

for q 4 1, but for q * 1 involves an additional set of nonlinearities in

all powers of the number operators NM.

In thermodynamic limit, where f 4 w at finite density, we have

derived2 the Yangs' equation at zero temperature, T = 0,

c(k) = 2 sin 2 ( k) - + (2, 1-r {(8(k-k' )/k} e(k')dk' (15)

with e(±k) = 0: - K s k s K defines the fermi sphere. We find the

density D of particles in the form D = lim (n/f) p(k)dk and the mode
C(4 r-K

particle densities p(k) satisfy an integral equation with the same kernel

as (15)2. The pressure p of q-bosons is then p = - PE-r f c(k')dk'.

The excitation energies e(k) from (15) also determine the ground state

energy density lim f - w (E f-I) = - p + -p D as well as the energies of

excitation from that ground state. It would be interesting and rather

important to try to infer this ground state energy from the SNSM; but, as

f 4 c in thermodynamics limit, n - w, so that D is a finite density.

Other results include the pressure p at finite temperatures p = - (2n3)-f

W tn(1 + e )dk' where = BT and the c(k') solve the finite T
f B-

form of (15) which replaces c(k') under the integral sign by - !n(1 +

e k making that integral equation nonlinear. We have also,

calculated asymptotically the correlation functions in thermodynamic

limit2

To sum up: As was well recognised by ACS In his paper the SNSM has

certain very real advantages - notably simplicity for the calculation of

low-lying eigenenergies and states, and versatility in that it is

applicable to discrete integrable and non-integrable systems (lattices)

if there is an operator A such that [9,A] = 0. On the other hand the

QISM, as In Refs. 2,9,10 e.g., displays the mathematical structure, a
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quantum group structure, but is limited to the integrable systems which

however can be lattices or field theories. However in this case it is

also possible to go to the thermodynamic limit and construct the

thermodynamics as well as the asymptotics of the correlation functions at

zero T and very small T. Analytical methods for the correlation

functions at all values of T are currently being developed and depend on

the classical form of the inverse method.
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Recently interest in localized modes for strongly anharnronic lattices was growing
mostly due to the paper by Sievers and Takenol, who proposed a new kind of localized
mode in nonlinear lattices. Because the lattice is without impurities, they called this
mode as an intrinsic localized mode in order to distinguish it from the impurity-inducted
localized mode. Different properties of the intrinsic localized mode have been disciissed
in a number of papers (see, e.g., Refs. 2,3) for 1D and 3D cases. The original model
for the intrinsic localized mode is the so-called Fermi Pasta--Tliam (FPU7) model. It
describes a ID chain composed of atoms with masses in, in which each alom inter-
acts only with its nearest neighbors. If ui(t) is the displacement of the n th atom
from its equilibrium position and k 2 and k4 are nearest neighbor harmonic and quartic
anharmonic force constants, respectively, the equations of motion are given by

d'
S= k2(Ufl + Un- 1 - 2u.) + k4[(u+]- + _ - ] (+)

For sufficiently strong anharmonicity, stable odd-parity localized modes are possible
with the frequency w given by W2  3 I (k2+Lk 4A2 ). Here the localized p)attern is ,,•(I) =
A(..., 0, -½, 1, -- 0,..-) cos wt ; the approximation is valid for larger (k4/k2).'l2. Some
authors have proposed another variant of a stationary self-localized mode. i.e. an even
parity localized mode, uj(t) = A(.--,0,--1, 1,0,...)cos,;t . which has been found to
be extremely stable.

Another type of intrinsic localized modes may be analysed for a model with nuonl-
linearity produced by an on-site potential2 , eg. as it is in the nonlinear Klein Gordon
(KG) model,

d2  
1

S= K(u•+i + un-I - 2uý) - au,, + 3 -ll 3 . (2)

Here highly localized modes exist with frequencies below (,3 > 0) the frequency gap
"-u"= nr/m or above (0 < 0) the cut-off frequency = w02 + 4K.
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One of the main problems in the theory of intrinsic localized modes is to prove
that they can move along the chain. Since there is no analytical expression for moving
intrinsic localized modes, in a recent paper by Bickhani ct al." this studl'y has lýen,
carried out numerically, and the authors made measurements of the shape and the
dispersion relation for moving anharmonic modes in the model (1). However, this
measurement did not show why the moving intrinsic localized modes are possible "wven
under the strong influence of discreteness effects, and which kind of relations exists
between different types of models for intrinsic localized modes. The purpose of our work
is to apply a simple analytical approach to investigation of moving intrinsic localized
modes in the models (1) and (2) and to compare the results for both the models. One of
the most important issues of our analysis is to show that nonintegrability of the discrete
models (1) and (2) gives rise to an effective periodic (Peierls-Nabarro) potential, which
may captuire the mode at the atom site or between the sites. Nevertheless, the model (I)
does support moving localized modes in a wide region of t he system l)arameters. but thie
model (2) cannot support propagating localized modes if the mode aniplittude exceeds
a certain threshold value, so that strongly localized modes will be always captitr(d by
the lattice discreteness.

The main idea of our approach is to use the integrable discrete Ablowitz -Ladik
(AL) model4 as a basis of a pertubation theory for models (1) and (2). We make
the so-called "rotating wave approximation", i.e. only the terms proportional to the
main harmonic are taken into account. In the framework of this approach the intrinsic
localized modes for the models (1) and (2) are treated as pertubed lattice solitons.

Let us start first from the KG chain (2). Substituting the ansatz t, = exp(-iwot)'~,
+c.c. into Eq.(2), where w2 = a/m is the gap frequency of the linear spectrum of
the chain, we keep only the terms -, exp(-1vot) so that under the assumption
d'P',/dt < wo%',, Eq.(2) will reduce to the discrete nonlinear Schr6dinger (NLS) equation

2 imwo0- y + K(W.+, + %P_1 - 2T') + /31¢.21•¢ = 0. (3)

Equation (3) may be written as a pertubed AL equation

den 1
2iw,.0 --- + K('I'+i + %P_,• - 2%P,) + -j3(,..+1 + ty._,)1,yI =/R'('.), (4)dt 2

where
R(ID.) 1 %p 12• (-4.+, + 1P.-, - 21P.). (5)

As is well known, the AL model given by Eq.(4) with R = 0 is exactly integrable and
it supports (moving) nonlinear localized exitations in the form of lattice solitons4 , the
latter may be highly localized objects involving only a few particles. The exact soliton
solution of the AL model can be presented in the form

P,,(t) =sinhpsexp [ik(n - xo) + i(]

cosh [y(n - xo)] ' (6)

where in the unpertubed case = 0, k = 0, i0o = (2/p) sinh pt sin k, and 6 = 2[cosh p cos k
-1]. In Eq. (6) and the subsequent calculations related to Eqs. (4), (5) we have used
the renormalized variables: t --+ (2mwo/K)t and T,, --+ (2K/,13)./2 %,n.

Considering now the r.h.s. of Eq.(4) as a pertubation (that is certainly valid for
not strongly localized modes), we will use the pertubation theory for the AL model
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based oln the inverse scattering transform'. According to this approach, the parameters
of the solution (6), i.e. p, k, n and .r0 , are assumed to he slowl var~ving in t mC
The equations describing their evolution in the presence of the perturbation may be
simplified using the well-known Poisson formula to evaluate the sums appearing as a
result of discreteness of our primary model,

dx0  2 dAk 2r0 sinh 2 t sin(27rxo)d in - dh- sink,i 3 sinh( r2 /) (7)

and also dp/dt = 0 as above. In Eq.(7) we keep only the contribution of the first
harmonic because the higher harmonics of the order of s will always appear with the
additional multiplier - exp(-,r2 s/p) which is assumed to be exponentially small ( even
for t -, 1). As p is constant, the system (7) may be easily analysed on the phase
plane (k,.r 0 ) assuming a paramettical dependence on i. As follows from ouir analysis.
there exists a critical value, ac ; 3.6862. Below the critical value, pt < it. there are
phase trajectories describing moving localized modes. Small values of the parameter
i correspond to tOe quasi-continuous approximation when the lattice equations are
transformed to the continuous ones and they may be described by the continuous NLS
equation. However, if the parameter u exceeds the critical value it,, tuie phase plane
does not have trajectories describing moving localized modes. This result simply means
that if the nonlinearity exceeds the threshold value, there are no propagating localized
modes in the chain. All such modes will exist only in a trapped state.

Let us now consider the similar problem for the FPU chain, being the original
model used by Sievers and Takeno'. To derive the perturbed AL equation in this case
we use the ansatz: ui = (-1)'[exp(iwmt)lV,, + c.c.], where w, = 4k,2/,, is the cut-off
frequency of the spectrum of the linear chain. Substituting this ansatz into Eq.(1)
and keeping again only the terms proportional to the first harmonic, under the same
assumptions as above we obtain the equation

dtn2irnw -- + ki4'•+•+ •,'n_1- 2'•) +24k 4 I 'n 2 (•,,+i + )n_1)=R('I'n), (8)

where now

R(*I') = -3k4{I4J+I 2In+1  + j~~ 21%1,ým~ n+ 1 + L 01 1'P

+ 2I,.(lI,.+n12 + I Tn-_1 2) + .('+a + n-l 61(.+ + q'.-m)} (9)

is an effective perturbation to the AL model.

Applying again the perturbation theory5 , we obtain the system of thrtc coupled
equations for the soliton parameters,

dxo 2 dk 272r3sinh 2 p sin(2r.ro) g(k,p), (10)
dt #dsinhpsink, t i p3 sinh(r 2/it)

dt = 2r 3 sinh2 P sin( 2 7rxo)tanh u f(kp),
dt = I 3 sinh(r 2/(p)

with g(k,y) = (cos k/cosh p) - 2 cos(2k) and f(k,p) = (sin k/cosh It) r 2 sin(2k). To
write Eqs. (10), (11), we have renormalized Eq.(8j as follows: t -+ (2m,,,ki)t and
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Fig.1 Phase plane (k, .r0) corresponding t~o Eqs.(l10) for fixed p.

Considering the system (10) for fixed pu we can use the phase plane (A, .ro) to show
different types of the nonlinear dynamics. In Fig.1 we find the presence of two straight
lines for each value of the parameter p (0 < p < cc. the solid lines for pi = 0 and
the (lashed ones for pl --, c, all other values of p will give lines in between) which
separate two different kinds of the system dynamics and they n••rer disappear. even
for the cases of very large p. Within the region separated by these two lines the FlPl"
model alwtay.s admits moving localized modes (lattice solitons), and this result confirms
numerical observations of moving localized modes'3 . For the complete modlel (10) to
(11) we have found that in the region III (see Fig. 1) the solutions dlep~end~ ut r-. ,,o' k/
on the variation of p, at least in the middle part. of this region. As a result, the maui
conclusion for moving intrinsic localized modes remains valid even if the evolution of p
(snmall in the numerical results) is taken into consideration.

In conclusion, we have shown that intrinsic localized modes in a. chain• with utoum-
linear interparticle interaction may always exist a~s moving excitations, but fo~r int, isic
localized modes in a chain with nonlinear on-sit~e potential, there is a threshold value
of the nonlinearity parameter above which the modes will be always cap~tured by the
lattice discreteness.
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Abstract

We extend the results of a previous calculation concerning the existence of
soliton bands in anharmonic quantum lattices. In particular we consider the case
where the periodicity f of the lattice is even rather than odd, and we also show
that for the two quanta case, the eigenvalues of the discrete nonlinear Schr6dinger
equation (a boson model) are equivalent to those of the Hubbard model (a fermion
model).

1 Introduction

In a previous calculation [1), we studied the existence of soliton bands in 1-D anhar-
monic quantum lattices, for the case where the periodicity of the lattice f was an odd
integer, and the number of quanta n was two, the simplest nontrivial case. Four models
were considered, the Discrete Nonlinear Schr~dinger equation (DNLS), the Ablowitz-
Ladik model, a fermionic polaron model, and the Hubbard model. The tool used in
this study is the Number State Method (NSM), so-called to distinguish it from the
Quantum Inverse Scattering method, which can also be applied to all but the first of
these models. Limitations of space prevent us from reviewing the details here: see 11, 21.

In this note we extend the calculations in [1] in two ways: (i) we show how to modify
the calculations for the even f case for the DNLS model (the theory for the A-L model
and the fermionic polaron model follows in a similar way), and (ii) we show how the
calculations for the Hubbard model can be recast so as to exhibit the equivalence of
this model in the n = 2 case with the DNLS model.
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2 The Discrete Nonlinear Schr6dinger lattice, even f case

The quantum DNLS model is a special case of the quantum discrete self-trapping
equation (DST), which has been proposed in a variety of applications, including the
description of molecular vibrations in one-dimensional chains [2].

The DNLS equation has the following Hamiltonian

f
Hdi.= -- _Z (btbibb + btbbI- + b~b,+j)

which commutes with the number operator Rd,, = = z= I bbj where bý (bj) are bosonic
raising (lowering) operators satisfying the commutation relations [b,, bj] = 6ij, [bt, bt] =
[k-, bj] = 0. The most general eigenfunction of /dLI3 and the translation operator
Pt is a sum of products of elementary number states of the form In,) In 2 )... Inl)
[nin2 ... ni], where n = n1 + n2 + ... + nf = 2 in the case we consider here.

In the even f calculation, there are two cases depending on whether the integer
v in the eigenvalue t = exp 2riv/f of the translation operator is odd or even. The
wavefunction corresponding to v even is

=(t)-'[20... 0] + . + Z(tT~i-l[1...00-01+
V f7 j=1(T J'[00 "\ ]-""-'- u+ /(f'/2) •J=1,t •-rn 1 .. 0• ~

whereas for v odd the last term in the sum is ommited.
The requirement of Hd-gIT'd,a,) = EIPdnl,,) leads to a block diagonalised matrix

diag .ad tsV=O-

where for even V, Qdls is a (f/2 + 1) x (f/2 + 1) matrix

S0 q"
Vq o1(2.1)

q 0 v\/2q
v/'2q 0

where q = (1 + t). For odd v, Q,, is the (f/2) x (f12) matrix formed from (2.1) by
ommiting the final row and column.

A plot of eigenvalues of H for the even f case almost identical to that for the odd
f case shown in [1]. The calculations for the even f case for the A-L scheme and
the fermionic polaron model goes through in a similar way, again the corresponding
eigenvalue plot looks identical to the odd f case.

3 The Hubbard Model

We consider here the Hubbard model, a quasi-one-dimensional equation arising in
the description of ferromagnetism and superconductivity [3]. The Hamiltonian is

f
Hb= -- Z (a4aj+, + ,aj_ + bb,+bl, + jatajb~bj ).

j=I
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ai(a.) and bjt(bj) are creation (annihilation) operators for different spin states, and both
obey fermionic anticommutation relations: {a,, a!} = 6,,, {ai, a } = {at, aý} = 0. The
Hamiltonian in this case commutes with two number operators, one for each spin state.
So, an elementary product state consists of two rows one for each spin state and each
column corresponding to a degree of freedom.

As in [1], we consider here only the case where one quanta lies in each spin state.

In [11 we used the notation [1:::0:::] for this sort of state, here for conciseness we use €,
for a state with one quanta in the "up" state at site i and one quanta in the "down"
state at site j.

The Hamiltonian has an additional symmetry property besides the translational
symmetry; the interchange of the two rows introduced through an operator which we
will call k. In [1] this symmetry was not used, but a general eigenfunction of Ný, T and
X and even f can be constructed in a straightforwards way. Again the result depends
on whether t/ is even or odd For even f'and even P define

+ Z(tTy)' _I + + E(tT),IqTHOb> = 1-7= 2- +=

/j=1 jj=1

+ /+E(tT)'
1- (01 _,2) +. .+ )-' (t- ,2-' /2)

+ -72- j =l v 2=|2 jP

Again H block diagonalises with the Q matrices

Q .ub M.+ (t) 0
Q M 0(t) ( bb_() (3.1)

where QHub(t) is exactly the same matrix as in the DNLS case (2.1), and

0 q* 0 0
q 0 q. 0

w,60 q 0 q*Qq_ (t) (3.2)

q 0 q*
0 0 q 0 f/2-1 x f12-1

with q as defined in the DNLS case.
For even f and odd v define

C f
+ >;,(tTy'' + c2 )(tTY - + 02) ++. + .

j= 1 + -LLj± l-7 f/ I I + fýE~ -

-f- f( O)/2 c f+
+ .'E(tT)' (01/2 + -!L/2) + (__

again Q ub(t) is split as in (3.1), but now Q 6b(t) is the same as in the even v case
except that the final row and column is removed, and Q" 1 (t) is as before, except that
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the row and column removed from Q+ M(t) is added at the end of the matrix, giving
two f/2 x f /2 matrices.

In the odd f case, the procedure is similar except the /2+term is omitted, and
Qfb6 (t) is now identical to the corresponding DNLS matrix (c.f. (3.5) in [1]), and
QHub(t) is the same as QH.•b(t) with the first row and column removed.

It can be shown that the matrices Q_ b(t) merely add more quasicontinuum states
to Qv+(t), so the overall picture is almost identical to the DNLS results. We have
exactly the same soliton and quasi-continuum bands, except the quasi-continuum band
now has a denser packing of states for a given f. We show in Fig. 1 a typical plot of E
v. v for the Hubbard model.

†',,.'I III.*

-4
.............

-30 -20 -10 0 10 20 30
v

Figure 1. Spectrum of the Hubbard model for f = 61, y=3
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STATIONARY SOLITONS IN DISCRETE LATTICES

OF DIFFERENT DIMENSIONALITY

V.A.Kuprievich

Bogolyubov Institute for Theoretical Physics
Academy of Sciences of Ukraine
252143 Kiev, Ukraine

The problem of the self-trapping (ST) exciton (or, equivalently, electron) as a re-
suit of its interaction with a crystal lattice, in the recent time is broadly discussed
in connection with the question of soliton energy transport in the quasi-l-d peptide
chains1 . The 2-d ST problems are considered with application to the surface states and
Langmuire-Bladgett films; the matter of particular interest is the bipolaron mechanism
of high-T. superconductivity in oxide ceramics with 2-d layered structure2.

Most of the studies of 2-d and 3-d ST states (3.4 and references therein) are based on
the continuum models, commonly using the Gaussian approximation for the electronic
wave function. Successive discrete consideration is applied mostly to 1-d cases5-.
Again, the 2-d and 3-d ST states are usually considered within the infinite isotropic
lattices, whereas one can point out a number of interesting applications which requires
a study of ST states in anisotropic models, with finite-size effects being important as
well.

To consider the above aspects of the ST problem we present a discrete-model study
of stationary self-trapped states of exciton adiabatically interacting with the rectangu-
lar D-dimensional N1 x N 2 ... x ND lattice. These states can be obtained from the
stationary conditions of the energy functional

E .. 4D2 1 Wq92 (1)
in Ma 2ma,

Site number m in the lattice is assumed to be a vector with components m 1, m2 ,... •,m,
nearest neighbour sites in the direction a (a = 1, 2,... D) are represented 1)y the vectors
m ± a, 0,, is real wave function, t,, are hopping parameters, q,,, is the change of the
bond length between sites m - ox and m, and w. is an elactic constants along the
direction a. The electron-lattice coupling is introduced, like in the Davydov soliton
model', through the dependence of the site energies c.. on the lengthes of the adjacent
bonds

f,, = co + Xja(qma + qm+a,a), (2)
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where X. are coupling parameters. The cyclic boundary conditions in each dimension
are assumed.

Using the stationarity conditions of E with respect to q,,, to exlude the lattice
coordinates we obtain (co = 0)

E E [2$ +a + 4 MI+.)] , = 4XQ/wata (3)
a m

Finally,the stationarity conditions of E with respect to 0, yields
" (2, ,,,V-a +o =0m (4)

ta [m-a + 4m+a + 9an(20f ' + +a)I= 60,(

where 0 is Lagrangian multiplier taking into account the normalization. Equation (4)
admits the solution 00 = C, plain wave with zero momentum, describing a free (F)
state; the constant C is determined by the normalization. The conditions which ensure
that the F state is stable (i.e. corresponds to an energy minimum) can be found, like
for 1-d case7 , using the Fourier transformation to obtain the eigenvalues of the Hessian
matrix defined in the terms of denormalized O,. As a result, the critical coupling
ensuring stability of the solution 0,. = C is determined by the smallest of ga which
satisfy the equalities

_tfgp - gati sin2 (ir/N.) = 2taC-2 sin 2 (r/Na), a = 1,2... D (5)

For the isotropic lattice (t. = t, g, =g, Na = N) one can obtain from (5) the

expression for the critical coupling

go = 2ND/[Dsin 2 (r/N) - 1]. (6)

When N >> 1 an approximate formula go = 2r 2ND-2/D shows that in infinite lattice
the F state is always unstable for D = 1 (go -•1/N) and stable for D = 3 (go - N);
for 2-d lattice go •9 10, so the F state is stable at g < go and unstable at g > go.

The obtained stability condition for the F state represents only its correspondence
to a local minimum and doesn't exclude the existence of deeper minima corresponding
to ST states. To analyze the problem we apply the Hartree-type approximation for the
wave function fn choosing it as a product of the normalized one-dimensional functions
0a.,. The energy expression (3) is thus reduced to

E = _t.Fa, F. = -T. - G.P./4, (7)
a

E(4 + 02mO,+
Ta = 2 •arn4a,m-o.a, Pa = a(qb, + '.¢,m+a), (8)

M M

where the effective coupling parameter for dimension a is
=E 4

Ga=gam fi Rp, R. (9)

The values of R. range from the minimum equal to I/Na (F state) to the maximum
equal to I (for the state localized on one site).

Qualitatively the influence of several dimensions upon self-trapping can be consid-
ered for the case of 2-d lattice (a = z, y). The dependence of the energy on 0a, can be
identified with that in the 1-d case, E = -t(T + §P/4), if the effective coupling § is

= g.PR, + gtvPv/2t., (10)
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Thus the degree of localization in z direction also depends on the y parameters and,
through R4 and P,, on the shape of 0b,,. Due to the increase of corresponding R. and
P, localization in some direction favors the localization along other directions.

To simplify the calculations of ST states we use the analytical approximation6' 7

- exp(-a 2 I rm - N./2 I), where a, > 0 are variational parameters. Then

F. = F(a.,G.,N.), F(a,GN) = 2/cosha + Gtanh(a/4)tanh(Na/2), (11)

& = R(a 0 ,NM), R(a,N)=tanh(a/2)tanh(Na/2). (12)

The set of a, which corresponds to the stationary states can be obtained from the
energy minimum conditions with respect to all the variables a,. Functions T, drop
with rising a., so at g, = 0 the point a, = 0 (F state) is a minimum. Because P,

.1 - d... 3- d
-2 -.... ---- - -- °'-

2-d -2

-4/ --2 - --- - - - °°-°- -

E E~ ~- -, - -.... - --dd

-6

-- --
8 

- --

S5 9 10 i1

Figure 1. Energies of the self-trapped states (solid lines), free states (dashed lines) and
the width parameter a (doted lines) in the minimum points as functions of the coupling g for
the isotropic lattices of different dimensionality with N, = 50

and R? are increasing function of a,, other minimum points are possible, at least when
coupling exceeds its critical magnitude.

For the isotropic lattice of the same size N = 2M for each of D dimensions the
energy expression is

E = -D[2/cosha+Gtanh(a/4)tanh(Na/2)], G = gtanh(a/2)tanh(Na/2)D- 1 (13)

In the 1-d case considered in6 the energy E = F(a,g, N) has a single stationary
point at a > 0, which always is a minimum of E(a). For the 2-d and 3-d cases the
characteristics of the curves E(a) strongly depends on the magnitude of coupling. For
the weak coupling the function E(a) has a single minimum at a = 0, which corresponds
to the F state. With greater g an additional minimum appears on the energy curve
but its energy is higher then that of the F state, so the corresponding ST state is
metastable. Subseqently increasing 9 makes the second minimum more and more deep,
thus stabilizing the ST state; the F state, the energy of which weakly affected by the
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coupling, becomes metastable; the height of the energetic barrier which separates the
energy minima can be estimated from the dependence E(a). Under strong coupling,
g > go the point a = 0 becomes maximum, thus the F state turns out to be unstable
and only the ST states remain. The corresponding quantitative data are given in Figure
1 which displays the calculated energies of the ST and F states and width parameter
a corresponding to the minima of E(a) in the 1-d, 2-d and 3-d lattices.

Various interesting cases can be considered in a simple way basing on the described
approach. In particular, the treatment of 2-d system as two coupled 1-d ones allows us
to consider the problem of 1-d-like states in 2-d structures. These states have the form

, 0,. or 0,,, = ,, and can be formally regarded as a special case of factorized
states. The corresponding analysis shows that the states with the symmetry breaking
along single direction are not stable in the isotropic lattice with N.1 = N. (they do not
correspond to energy minima but to saddle points). The folded structure is possible
when N1 > Nv ; this quasi-1-d system can be considered as a model of the long stack
of ring molecules. The consideration of Hartree-like equation shows that the symmetry
breaking of 0, with the symmetric 0. in this system is possible even in the absence of
the coupling along the stack (g. = 0).

The presented approach in its general formulation provides a unified natural back-
ground for studing ST-state properties in various anisotropic 2-d and 3-d discrete sys-
tems. So, the soliton formation in the discrete quasi-l-d system involving interchain
coupling can be considered in a similar way. Among other important applications, the
3-d ST problem in the 2-d layered structures like that of high-T, oxide superconductors
is worth of studing.
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NUMERICAL AND EXPERIMENTAL STUDIES ON

THE AC-DRIVEN DAMPED TODA LATTICE

T. Kuusela1 , J. Hietarinta2

1 Department of Applied Physics, University of Turku

20500 Turku, Finland
2 Department of Physics, University of Turku
20500 Turku, Finland

The Toda lattice, sometimes referred to as the exponential lattice, has been used
to model the nonlinear effects of lattice vibrations in crystals in an effort to study
e.g. the partition of energy among various modes of vibration, thermal expansion
under excitation, the finiteness of the thermal conduction etc. The Toda lattice with
dissipation and an external ac-drive can be written in the form

02ln(l + V,)+ aOtln(l + V,)= V,_l + V,•+ -2V, + 2(-1)"Ecos(wt), (1)

where a, e and w are the dissipation factor, the drive amplitude and frequency, re-
spectively. If a = E = 0 we have an integrable system with all solitonic properties.
Then the single soliton solution is

V,(t) = sinh 2(p)sech 2( pn ± sinh(p)t). (2)

In the case of a > 0, e = 0 the system has decaying solitary wave solution because of
dissipation, but nevertheless many solitonic properties remain.1' 2' 3

The dissipation in the Toda lattice can be compensated with an external ac-
drive, as it has been recently suggested4 . Analytical results4 and direct numerical
simulationss of the system (1) have demonstrated that stable propagation of solitons
with the velocity v is possible, if

w=(2N+l)irv, N=0,1,2,.... (3)

and if e > fthr, where fthr is the threshold value of the drive parameter. It has been
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Figure 1. The amplitude of the soliton as a function of time with different values of the drive
parameter E.

shown analytically4 that for a sufficiently large velocity (N = 0)

fth, ; 4aw ln(v). (4)

The sign-changing factor (- 1)' in (1) is absolutely necessary to provide for real input
of energy from the ac-drive. Without this factor the amplitude of a soliton decays
even if the drive amplitude is very large.

We have numerically integrated equation (1) with periodic boundary conditions5 .
As an initial state we have used the ideal 1-soliton solution (2). In order to examine the
evolution of the soliton under external drive we have solved numerically the eigenvalue
problem of the Toda lattice at the moments of time t = 0, 10, ... , 150. The amplitude
A = sinh2 (%) of the soliton corresponding to the dominant eigenvalue is shown in
Figure 1 as a function of time for different values of the drive parameter c (p = 2.30,
v = 2.14, a = 0.002 and w = 6.774). There is clear threshold value at f = 0.0490 ±
0.0005. With smaller values the amplitude decays exponentially but with higher
values the mean amplitude is constant.

In Figure 2 we have collected the threshold data for three different dissipation
factors, each one with five different velocities. The drive parameter is normalized
with the dissipation factor in order to compare directly the theoretical prediction (4)
with numerical results. With large amplitudes all curves converge and approach the
theoretical curve. In the limit of minimum velocity v = 1 the threshold value tends to
increase rapidly. This is because of the width of the soliton: when the soliton extends
over several lattice points, the drive partially cancels itself. We also observe that
with small dissipation a relatively stronger drive is needed. The rate of energy losses
is a sum of the dissipative part proportional to a and the constant radiative part
independent of a, and therefore the normalized drive parameter approaches infinity
when a goes to zero.
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Figure 2. The threshold values of the drive parameter normalized with the dissipation factor as a

function of the soliton velocity. The theoretical prediction (4) is drawn with dashed line.

The numerical results show clearly that soliton dissipation can be compensated
in a discrete lattice with an ac-drive which has alternating sign in adjacent lattice
points. One can expect that this effect can be seen in real solitons propagating in
an ac-driven quasi-one-dimensional ionic lattice or in an ion-doped polymer chain.
One experimental realization of this phenomenon has been performed using nonlinear
electrical transmission lines, which serve a practical tool to investigate soliton phe-
noinena in nonlinear discrete systems. The external sinusoidal drive is included using
inductive coupling of the drive generator 6 , as shown in Figure 3. By choosing the
values of the components properly, this circuit very well approximates the system (1),
and the energy input and threshold effect (in a agreement with numerical results) are
easily observed.

Rs

' Asin(w~t+a) Ls L

S0 IIn 1
n+1

RL R R
ýVn- 1 V, 7

Figure 3. The nonlinear electrical transmission line with the inductively coupled drive.
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QUANTUM EFFECTS IN THE NONLINEAR NONADIABATIC DIMER

Riccardo Mannella, David Vitali, Luca Bonci and Paolo Grigolini

Dipartimento di Fisica dell' Universita" di Pisa
Piazza Torricelli 2, 56100 Pisa, Italy

Kenkre and Wu I have studied the nonadiabatic effects on the nonlinear dimer,
assuming a finite relaxation time for the vibrations.

They have considered a model in which each site interacts with an overdamped classical

oscillator

i c1(t) = V c2(t) - X 131(t) cl(t)

i c2(t = V c1(t) - X NO2(t) c2{t)

(1)

01(t) + F N(t) = - Ici(tf

p2(t) + r p32(t) = -Ic2(tf

With the following definitions

(ox(t)) = c(tf - c2(tF (2a)

((Ty(t)) = i[Ct1(t) C~t) - C*I(t) C2(t)] (2b)

(o(t)) = [c (t) c(t) + ct(t) c2(t)] (2c)

y(t) = k (130(t)- 132(t)) (2d)

it is possible to rewrite eqs.(2) in the form
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= 2 V(ay(t))

(o.~t)) = - 2 V (ao(t)) - X (az(t)) y(t)
(3)

W4 X (ary(tD) At)()

At) + r y(t) = r ((t))

We have investigated the effects of relaxing the classical assumption on the vibrations,

by studying a Frbhlich-type quantum mechanical Hamiltonian, which reproduces the

semiclassical set of equations (3). We have considered the spin-boson Hamiltonian of

Leggett et al. 2, in which the overdamped oscillator y is replaced by a continuous distribution

of quantum oscillators

H = a, + g rxE i(bt+bi) + co ib+bi (4)
i i

supplemented with the following ohmic spectral density

J(co) - g2 i I~ 8(C0 - (O0) = g2 o exp(- co/o.) (5)

The relationship between the parameters is the following: 3

V *& T X -' 4A = 4g2o~c r .- •Z CoC (6)
2 IC

We have focused on <ax(t)>, the probability difference between the two sites, and we

have derived the following nonlinear and nonstationary integrodifferential equation for its

dynamics: 3

'ax(t)) = - o0f ds (a.(s)) Re {exp [- 4g2j dtlj dt2 (x(°)(t2)x-O)(0))]e-iA(ts)

x exp 14 i g2 fd& dc'E I'2sin co(r - 'c ')(l - (ox( 'c')))] (7)

where r" = i i (9i + b9) is the quantum counterpart of y of eq.(2d) and it is the collective

coordinate describing the molecular vibrations.
Our equation (7) corresponds to the nonlinear nonadiabatic dimer of vq.(3) in presence

of the quantum fluctuations of the oscillators (first exponential factor in eq. (7)). Our
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approach (7) also provides a nonlinear generalization of the noninteracting blip

approximation (NBA) theory of Leggett et al. 3. In fact, we get the NBA equation by

neglecting the nonlinear factor (the last exponential term) in eq.(7).

The stability of self-trapping against thermal and quantum fluctuations is a crucial question in

the nonlinear dimer because self-trapping is necessary for the manifestation of Davydov's

soliton along molecular chains. The nonlinear nonadiabatic dimer is characterized by a
transition to localization (<COx>eq * 0) at sufficiently large nonlinearity parameter X. There

are two stable equilibrium broken-symmetry states corresponding to the stationary states of

the DNSE, that are irreversibly reached due to the coupling to the dissipative oscillator. The

self-trapping transition has the form of a second order phase transition which takes place at
Xc = 2V

It is interesting and a little bit surprising that also the linear integrodifferential equation

derived from the NBA shows a very similar transition to localization at zero temperature. It is
again a second order phase transition, but at a larger threshold, Xc = XF, (V<, due to

time-scale separation).

Our theory recovers under specific conditions both the NBA and the nonlinear nonadiabatic

dimer theory, each of them leading to localization. Thus one would be tempted to conclude

that also our equation implies localization. The main result of our investigation is that this
intuitive conclusion is wrong and that even if one starts from <ayx>=1, there is no

self-trapping. The joint action of nonlinearity and quantum mechanical fluctuations leads to
localization breakdown, in spite of the fact that their separate action would support

localization.
We have performed an asymptotic analysis of eq. (7) by assuming that <Ox(t)> tends

to a well defined limit, <(;x(oc)>, and we have studied which are the asymptotic values

allowed by this equation.
We have found the following results: 4

i) the "delocalized" solution <ax(*c)>=0 is admitted for any value of the coupling strength g.
ii) for g >1/2 also the fully broken-symmetry state, namely <Ox(,,)>=l, would seem

possible. Nevertheless, this additional solution must be disregarded because for any finite
value of the tunneling frequency coo the state of ax=l cannot be an eigenstate of the

spin-boson Hamiltonian.

Thus we conclude that our approach (7) is incompatible with any self-trapping, even if it

interpolates between two theories (NBA and Kenkre-Wu theory) which both yields

localization.

To confirm this asymptotic analysis we have solved eq.(7) numerically in the ohmic

case at zero temperature (see figures 1 and 2).

Since the self-trapping mechanism is the key for solitonic behavior in the DNSE, our

results seems to suggest that quantum fluctuations can be quite effective in the destruction of

solitonic propagation in molecular chains.

It is still an open question whether our results can be extrapolated from the dimer to the
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infinite Ohain and how much they depend on the details of the quantum mechanical model

Hamiltonian we have chosen.

1.0-

0.9 . - Kenkre-Wu0.9- .......-.....

0.8-.

E0.7- 
NBA

•0.6-

0.5- Eq. (7)

0.4-

0 2 4 6 8 10 12
t

Figure 1. <crx> versus time at zero temperature. The values of the parameters are: to0=1, woe=20, g=0.55
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- 0.992- NBA
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0.986-

0.984-

0 2 4 6 8 10 12

t

Figure 2. <ax> versus time at zero temperature. The values of the parameters are: tco=l, toe= 20, g=0.75
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HEISENBERG SPIN CHAIN MODELS
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INTRODUCTION

It has been realized in recent times that the elementary

excitations in Heisenberg ferromagnetic systems can be charac-

terized by spatially compact solitons in addition to the linear

spin waves (magnons). 1-4 Hence rigorous attempts were made

after the discovery of the concepts of soliton and inverse

scattering transform to identify soliton possessing integrable

spin models. It was successful in the case of simple spin

models like one-dimensional classical isotropic and anisotropic

spin chains. At the same time Lakshmanan approached the

spin chain problem through an understanding of the underlying

geometry of the system. This enabled Lakshmanan and his co-

workers2,3 to investigate a large class of integrable spin chain

models by including different kinds of magnetic interactions.

Some of the systems in this list include bilinear, biquadratic,

deformed, site dependent, and radially symmetric Heisenberg

ferromagnetic spin chains. Similarly gauge equivalence forma-
4

lism introduced by Zakharov and Takhtajan connects the integ-

rable nonlinear Schrodinger (NLS) family of equations with

integrable spin models. The main advantage of the above equi-

valence method is that individual treatment of each one of them

would become unnecessary and full information about only a few

basic equations would be sufficient to solve the rest generated

from them. In this paper we discuss the connection between

various spin systems and nonlinear Schrodinger family of equa-

tions through geometrical and gauge equivalence methods.
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GEOMETRICAL EQUIVALENCE 1

Consider the evolution of spins in a chain and map the same

to a moving helical space curve in E3 at a given time by identi-

fying the spin vector with the unit tangent vector of the space

curve. It is known that at any arbitrary instant of time, the

state of this space curve with given curvature R(x,t) and tor-

sion t(x,t) is governed by the following Serret-Frenet (SF)

equations.

eix d Aei , d = xe 3 + Te 1  (1)

Here e,, i = 1,2,3 are the tangent, normal and binormal (tihedral

vectors. Using the SF equation and the spin evolution equation

(after replacing the spin vector S by e 1 ) the time evolution

of the trihedral can be written as

eit = wAei, W = •ej + w2e2 + w3e3 (2)

u', w2, w3 are functions of X,t,X,T and their derivatives.

The compatibili-y of eqs. (1) and (2) (i.e.) 3 it
at ax

gives a set of coupled partial differential equations inx andT

which on making the complex transformation

q = x(x,t) exp { i tx' ,t)dx' } (3)

lead to different nonlinear evolution equation in the NLS family

depending on the nature of magnetic interactions of the system.

GAUGE EQUIVALENCE
4

Consider the linear problem of Lax pair associated with the

integrable equation Lq = 0.

S: U= U = VP (4)

where the Jost function p and the Lax pair U, V are complex

244



matrix functions of the field q, qx . . ., the independent

variables x and t and the spectral parameter X The compati-

bility of (4), i.e., xt = ' Ut -V + [U,V] = 0 yields

the original nonlinear system. In order to construct the equi-

valent new evolution equation, we introduce the gauge trans-

formation

(p g-1 (5)

where T' is the Jost function for the new system and g E GL(2,C)

is a unitary matrix function of x and t. Using (5) in (4), we

obtain the new linear eigen value problem

= U'p' , c't = V'cp' (6)

with U' = g- Ug - 1-gx , V' = g- Vg - g- 1t, The compatibility

of (6) gives the new equivalent integrable evolution equation

for which the Lax pair is given by U' and V'. Now, to connect

NLS type equations with the Heisenberg ferromagnetic spin systems

we introduce the transformation S = g- 1 3g. The applicability

of the above two methods is given in Table 1.

CONCLUSION

We have demonstrated that through geometrical and gauge equi-

valence methods it is possible to 'unify' a large number of

integrable systems, pinpointing a few basic ones. Application

of these methods also allows us to generate new integrable

systems along with their Lax pairs.
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Abstract : Nonlinear dynamics and instability mechanism of a lattice model for
elastic phase transformations are presented. On the basis of a two-dimensional lattice
model involving nonlinear and competing interactions the formation and dynamics of
twinning in alloys are examined. The emphasis is placed especially on the instability
mechanisms of a strain band and modulated structure with respect to the transverse
perturbations producing then localized structures on the lattice. The physical conjec-
tures are illustrated by means of numerical simulations. The results are interpreted as
microtwinning formation in crystalline alloys.

INTRODUCTION

Research in recent years has received a great interest in complex spatial structures
and nonlinear dynamics taking place in numerous fields of physical sciences. These
structures become fondamental in the study of phase transitions which are usually ac-
companied by the appearance of defects: dislocation motions, grain boundaries, domain
wall structures and twinnings [1,2]. Here, we want to illustrate the formation of spatial
and temporal patterns in two-dimensional systems occuring for phase transformations
in alioys such as ferroelastic-martensitic transformations. The main motivation of this
work is the understanding how spatial structure formation and related dynamics arising
at the microscale are able to organize the system at the macroscale. Ferroelastic-
martensitic transformations are characterized by involving lattice distorsions, usually
shear displacements. The transformation is accompanied by the dynamics of twin in-

* terfaces and twin bands [3,4]. On the other hand, the nucleation process can be seen
as a pretransformation phenomenon where modulated strain structures are developed
within the high-temperature or parent phase. However, the instability phenomena can
be considered as the growth of martensitic phases producing thus localized structures or
elastic domains. These microstructures are well described at an intermediate scale where
the microscopic physics provides competing and strongly nonlinear interactions. This
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underlines the interest of lattice models, since the latter possess the physical ingredients
which are the basis of the relevant effects.
Starting with a two-dimensional lattice model which allows us to describe a cubic-
tetragonal transformation, an instability mechanism for martensitic twinning is exam-
ined [5,6]. The existence of low-lying transverse acoustic phonons propagating along the
(110] direction is responsible for lattice instability [7]. The system exhibits structures
made of spatially periodic arrangements of martensites referred to as "tweed patterns"
occuring in some range of temperatures and followed, at lower temperature, by the
martensitic phase. First, the quasicontinuum approximation of the lattice model leads
to an asymptotic model which describes the long-time evolution of the nonlinear struc-
tures emerging from the instability. Second, by means of semi-discrete approach and
in the low-amplitude limit an envelope equation is then deduced from the microscopic
system and provides a criterion of stability for modulated structures.

THE MODEL

a. Lattice Interactions
Let us consider an atomic plane made of squares parallel to the i and j directions (see
fig. 1) (In-Tl, Fe-Pd are good examples). A particle of the lattice plane is located by
(ij). After deformation of the lattice, the particle experiments a displacement in the
plane defined by u(i,j) and v(i,j) along the i and j directions, respectively.

1-2 1-1

Fig. 1 Two-dimensional lattice model and details of the
interactions by pairs and noncentral forces

We assume that the particles interact tikrough two types of interatomic potential
(i) interatomic interactions between first-nearest neighbors considered as functions of
particle pairs in the i and j directions and in the diagonal directions as well and (ii)
interactions involving noncentral forces or three-body interactions between first- and
second-nearest neighbors in the i and j directions. These interactions provide competing
interactions which are equivalent to bond bending forces due to the long-range atomic
interactions. Then, we can propose the following lattice energy [6,8]

V J 4 • {(S(i,J)) + 1 #(G(i,j))2 + -6 + (A+G(i,.)) 2 1

11j 2~ 2

+ ( [(A+(S(i + 1,j) + 2S(i,j) + S(i - 1,j)))2

+ (A+(G(i,j + 1) + 2G(i,j) + G(i,j - 1)))2]} (1)
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where we have defined the discrete deformations

S(ij) = u(i,j) - u(i - 1,j) , G(i,j) = u(i,j) - u(i,j - 1) , (2)

and the potential 4t is given by

$(S) = 1as, - + s (3)

The equations are written in nondimensional unit and the coefficients a, 6, b and 77
are the parameters of the model. The first two terms in Eq.(1) are the nonlinear and
linear potentials emerging from the interactions by pairs. The lattice potential (3) is the
expansion up to the fourth order of the interactions by pairs in the i direction. The third
and fourth parts of the lattice energy represent the noncentral interactions in the i and
j directions between first- and second-nearest neighboring particles. The operators A+
and A+ denote the forward first-order finite differences : A+f(i,j) = f(i + 1,))- f(i,j)
and A•f(i,j) = f(i,j + 1) - f(i,j).

b. Equations of Motion
Adding the kinetic energy to the lattice energy (1) we can write the following equation
for the discrete displacement u(i,j)

ii(i,j) = A+L EL(i,j) + A+Ti T(i,j) , (4)

where we have defined some discrete stresses

!L(i,j) = a(i,j) - AXLL(i,j) , (5.a)
ET(i,j) = /OG(i,j) - L XT(i,j), (5.b)

a(i,j) = aS(i,j) - S(i,j) + S(i,j) 3 
, (5.c)

XL(i,j) = A+L (S(i,j) +±i(S(i + 2,j) + 4S(i + 1,j) + 6S(i,j)
+4S(i - 1,)) + S(i - 2,j))), (5.d)

XT(ij) - A+(6G(ij) + i7(G(i,j + 2) + 4G(i,j + 1) + 6G(i,j)
+4G(i,j - 1) + G(i,j - 2))) . (5.e)

The operators AL and AT represent the backward first-order finite differences in the I
and j directions, respectively. Equations (5.a) and (5.b) define the discrete macroscopic
stresses and Eqs (5.d) and (5.e) are the microscopic stresses due to the noncentral
interactions. Note that the nonlinear stress (5.c) derives from the potential (3).

* QUASICONTINUUM MODEL

In order to describe, at the continuum scale, the lattice dynamics. we then consider the
* long-wavelength limit of Eqs (4) and (5). After some classical algebras we arrive at the

equation of motion for the continuous deformation S(x, y, t)

St = ELz + ETyy , (6)

with

EL = a(S) - 61S. , (7.a)

ET = flS - 62Syy, (7.b)
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where we have set 6b = 6 + l60 - a/12 and 62 = 6 + 16j7 -/3/12. Note that we recover
the macro-stresses a(S) and O3S in Eqs (7.a) and (7.b) and the last terms in Eqs (7.a)
and (7.b) stand for the microscopic stresses which emerge both from the noncental
interactions and discreteness effects. It should be noticed that the quasicontinuum
model thus deduced from the lattice model is somewhat similar to a continuum model
derived from nonlinear elasticity including strain gradient [4].

DYNAMICS OF NONLINEAR STRUCTURES

a. Numerical simulations
Here, we are interested in the instabilities with respect to the tranverse disturbances of
a strain band moving in the x r :.r, ion and homogeneous in the y direction. A question
can be risen, what is the new spatial structures emerging from the instability process
and we want to know whether they are coherent and stable or not. The numerical
scheme is provided by the set of difference-differential equations (4)-(5). The results of
the numerics are shown in Fig.2. Figure 2.a is the initial condition, that is a localized
deformation in the x direction and homogeneous along the other direction which is
however a solution to the 1D problem. Some time later, perturbations are developing
along the transverse direction as depicted in Fig. 2.b. The instabilities are growing
showing that the nonlinear structure is no longer stable with respect to the transverse
perturbations. After a rather long time, the resulting pattern consisting in a disk-shaped
structure is created as shown in Fig. 2.c. This structure turns out to be robust and
stable [6,8].

* ABOVE 0.Q
0.1010 0.12
0.08 TO 0.10OO0.06 TO 0.08 >.1

ABOVE 0,10 a .00610 0.08

- 0710 0.090.3TO000.07 TO 0.09 0.01 TO 0.03

L 0 & 0.03 ,. b 0.01 BE OW 1 t0 .0 3 T O 0 .0 4 48S0.03 T0 0.03
o o4 To 0,o03411
0.01 & BELOW (b) X

1 34
(a) X

Fig 2 : Instability of strain band and forma- AV0W 023

tion of a localized structure (a) initial condi- 0.2010 0.23

0.16 TO 0.20
tion, (b) transverse instability and (c) locali- 0.09 TO 0 .3° >.

0,5TO 0.09140zed coherent structure. 0.02 TO .009
0.02 & KL(0W

1 34 67
X

b. Asymptotic model
In order to understand the evolution of the localized structure over large scale of time.
we derive an asymaptotic model from the quasicontinuum model (6). By means of a
multiscale technique an equation for the strain V7 (the zero-order of the expansion) is
obtained at the lower order in a.small parameter e (which is associated with the weak
nonlinearity) and it can be written as [8]

(V417 + (V,2 _-3) + 6i1 Vtt)t = 130'yy (8)

where we have introduced the new variables

2 =22(- _r) y = ey T = -f l2t/v (9)
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and we have set v = % the sound velocity in the x direction. Accordingly, the long-
time evolution of the nonlinear structure (see Fig. 2.c) is governed by Eq. (8) which
is of the Kadomtsev-Petviashvili type (KP equation). We notice that, in the standart
KP equation, the third-order nonlinear term does not exist [9]. It can be prcr.,ed that
localized solutions to Eq. (8) are stable [9].

STABILITY OF MODULATED STRUCTURES

a. Linear analysis
Going back to the discrete system, we consider the linearized equations (4) about a
uniform deformation So corresponding to a stabie minimum of the lattice potential (3).
By looking for harmonic solutions to the discrete linearized equations of motion of the
microscopic model, we obtain the dispersion relation of waves traveling in the i direction

W2 = 4 [& (So) sin 2 (p/2) + 46sin 4 (p/2) + i7sin 4 (p)] , (10)

where & (So) = (&5 a/OS2)'s=s, p is the wavenumber and w is the circular frequency.

The details of the dispersion curves w-2 as a function of p are drawn in Fig. 3. The
curves exhibit a softening at a nonzero wavenumber. For a particular value of a curve
(c) corresponds to the critical situation for which we must have w2 (po,ao) = 0 and
(dw2/dp)(P0 GO.) = 0. Then, the stability condition is w2 > 0 for all p'- :see curve (b)).

The critical situation occurs when w2 vanishes for a = a 0 at p = po while w2 remains
positive for all r+her p's. Then ao denotes the critical value of the control parameter
or the elastic modulus for which a periodic state of strain with wave number po takes
place on the lattice.

3.0-

1.8- (a

0.6

Fig. 3 : Phonon dispersion curves : (a) (b
classical atomic chain, (b) stable case
(a > ao), (c) critical situation (a = ao)
(d) small zone of instability around

the critical wavenumber Po (av < ao). -0.6 t6
0.0 0.891

Wave number

b. Nonlinear analysis
In the vicinity of the critical point, the linear approximation breaks down after a time
of the order 1/w and the nonlinear terms would no longer be ignored. With the view of
examining the influence of nonlinearities on the structure stability we must consider a
semi-discrete approach and multiscale technique in order to derive an amplitude equa-
tion [10]. We first introduce a small parameter as follows

a = ao + Ae2, (11)
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which can be connected with the characteristic time and length scales around the critical
point. Now, we look for solutions to the complete nonlinear equations of motion (4) as
an asymptotic series of S(n, m) in e and in harmonics of the phiase variable

S(n, m) = eA(n, m)e inpo + f2 (BI (n, m)e"fPO + B2 (fn, m)e 2',p°) + c.c. (12)

The method consists in separating the fast changes of the periodic structure involving
the discrete phase npo while the amplitude parts (A, B1 and B 2 ) are treated in the
continuum limit, knowing that the solution (12) is valid in the vicinity of the critical
point. Without getting into the algebraic manipulations, ie finally arrive at

Arr- (w2)P Axx - /3Ayy + AA - yIAI2A = 0, (13)

where we have set

A = 4Asin2 (po/2) , (14.a)

y = 4sin2 (po/2) (-3 + 8sin2 (Po)/w2 (2po)) , (14.b)

and (w
2 )PP holds for the second derivative of w

2 with respect to p taken at p = P0-
Moreover, we have introduced a slow time variable r = et and stretching space variables
X = ex and Y = ey. We remark that Eq. (13) obtained at the third order in f is of
Ginzburg-Landau type. We can relate the amplitudes B1 and B 2 to A. In fact, Eq.(13)
describes how the amplitude of the strain of the first order deviates locally from the
basic periodic homogeneous strain structure. The study of homogeneous solutions to
Eq. (13) provides the growth rate of the transverse perturbations, hence a stability
criterion.

0 ABV 0.01 ABOVE 0.020o.0o• TO 0 o.o0 TO 0.02
'-00 '0 '0'0 0.0 0 0.01N 000 TO 0.00 00.0 To 0.0l
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Fig. 4 : Instability of a modulated structure A 0.8

(a) solution at t =0, (b) small oscillations o • o,,.

in the transverse direction and (c) resulting 032 TO "
-o0ot TO 0.16

pattern made of localized microstructures. :015 To. -10) 1

I 4S 91

x

c. Numerical simulations
Using the microscopic equations as a numerical scheme we illustrate the evolution of
the nonlinear structure beyond the instability. The results are presented in Fig. 4.
The initial structures which consists in spatially sinusoidal strain in the x direction and
homogeneous in the y direction is given in Fig. 4.a. The wavelength of the periodic
structure corresponds to that of the critical wavenumber Po. The elastic constant a
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is slightly shifted just below the critical value ao. After a short lapse of time, small
oscillations are taking place along the transverse direction as shown in Fig. 4.b. Latter
on, we observe that the instability has produced an array of localized structures in both
directions of the lattice (Fig. 4.c).

CONCLUSIONS

Our main objective was merely to briefly describe the physical mechanisms of nonlinear
structure formation occuring in ferroelastic-martensitic transformations. On the basis of
a two-dimensional lattice model two interesting problems related to twinning dynamics
have been examined. We have pointed out the importance of the microscopic point
of view, because of the scftening of the acoustic phonon branch which triggers lattice
instabilities and gives rise thus to complex patterns. The latter can be considered as the
partial growth of martensitic domains in the high-temperature phase. These domain
structures are usually observed by means of high-resolution electron microscopy which
reveals very fine microtextures in various alloys [11].
Nevertheless, further extensions of the model can be studied both in the framework
of the discrete system and continuum limit. In addition, the dynamics of the elastic
structures is certainly influenced by applied stresses and damping leading to hysteresis
effects.
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DISCRETE MODULATED WAVES
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Abstract

The continuous nonlinear Schr6dinger equation has both nonintegrable and
integrable discretizations. In this paper we consider the question of whether
these discretizations are equivalent as models for modulated waves on nonlinear
lattices. The evolution equations for the envelope of discrete modulated waves
on the sine-Gordon lattice are derived by the method of multiple scales. Both
the standard discrete nonlinear Schr6dinger equation and its integrable variant
are obtained. The integrable variant is not generic.

1 Introduction

The nonlinear Schr6dinger (NLS) equation is the generic evolution equation for the
envelope of modulated waves in continuous systems with periodic boundary conditions
[i],

iu, + u.+I 2  =0. (1.1)
Two discretized versions of the NLS equation have been used to study its properties
numerically. Applying the central difference approximation to the spatial derivative
one obtains the diagonal discrete nonlinear Schr6dinger (DDNLS) system,

+ - 2un + un-, + 21u.1 2un = 0. (1.2)
h2

A different approach was taken by Ablowitz and Ladik [2]. They developed a method
to explicitly construct completely integrable differential-difference equations and in this
context derived the integrable discrete nonlinear Schr6dinger (IDNLS) system,

~~+ ~ 2~~ +lUf~ +2Iu 1 I2un _u1 ) = 0. (1.3)
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For certain parameter values DDNLS exhibits chaotic behavior while IDNLS, being
integrable, can never have chaotic behavior [3]. Some progress has been made in
the analysis of these different behaviors by considering DDNLS as a perturbation of
IDNLS [4,5]. The issue of interest in these studies is the use of discrete equations as
approximations to the continuous NLS equation. Equation (1.1) may also be derived as
the continuum limit of modulated waves on a nonlinear lattice [6,7]. In these cases the
question arises as to which of the discretizations may be more appropriate for numerical
simulations of modulated waves on the particular lattice being studied.

In this paper we demonstrate these considerations with the sine-Gordon (DsG)
lattice,

fi,n = un+ - 2u. + un-, - sinu,. (1.4)
It arises as a model of arrays of point Josephson junction contacts or of torsional pendula
[8]. We will derive the governing equation for the discrete envelope of modulated waves
for the DsG lattice and show that DDNLS and IDNLS are accurate to the same order
as envelope equations. This provides a derivation of IDNLS in a physical context. We
will also show that IDNLS is not a generic envelope equation.

2 Derivation

It is assumed that the DsG lattice with periodic boundary conditions has small
amplitude solutions which may be expanded in terms of the parameter e,

Un = •Un.0 + e2uu., + E3
Un,2 + O(e 4 ). (2.1)

The amplitude is assumed to vary with the slow time scales T, = et and T2 = e2t, So
the first order solution is of the form

u,,o = an(TI, T2)ei("?-1Gt) + a*(TI, T2)e-i(nO-wt)) (2.2)

where 0 = the wave number of the carrier wave and w = the carrier wave frequency.
It is also assumed that the nearest neighbor amplitude variation is 0(E). Using the
calculus of forward differences this assumption is expressed as

Dan = a,+1 - a,, = O(E). (2.3)

In this formalism the second difference is

D2a. = Dan+, - Dan = a,+2 - 2an+1 + an = O(C2 ). (2.4)

The expansion (2.1) is substituted into (1.4) and the terms are grouped by powers
of e. At first order the relation

- w2a,, = an+1eie - 3an + anle-i (2.5)

is obtained. The difference (2.3) is used to write an,+, and a,,-. in terms of a, and one
obtains the dispersion relation,

W 2 = 3 - 2cosO, (2.6)

and carries the differences DaneiO - Da,,_le-.s to next order. It is worth noting that
(2.5) can also be written as

a,, (a+leS + a"-le-")

1 a-iosa o + a,, es) (2.7)
Cos
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At order 0 a discrete version of the conservation of wave-number is obtained,

a,,'p + sin 0 Da,,- = 0. (2.8)

Here we have used the second difference (2.4) and carried the D0",2-.e-'O term to order
a. The e' equation is

12
2•&0"nT, + a0T,T1 = "•1" 2a.0 + D0a,,1e- (2.9)

From (2.8) we obtain
sinT20 D an-,2 (2.10)anT",TI = W2 o.i

and so (2.9) can be written

4w + + 0"_ +_ = 0. (2.11)

The relation (2.7) can be used in the nonlinear term to write

e-i sin 2 e .0
i0"T -+ + - )D2 a,,_ + 4 w cos---I'"(a"+1e + a.-le-'e) = 0. (2.12)

These relations are valid for arbitrary values of the wavenumber 0.
When the carrier wave is long the coefficients of (2.11) and (2.12) may be expanded

about 0 = 0. The following systems are obtained

2ia, 2 + an"+, - 2a, + an,-% + I an12a,n = 0. (2.13)

and
2 ia.T, + an,+1 - 2a, + an-.1 + I a. 12(an+i + a0•-i) = 0. (2.14)

These are the DDNLS and IDNLS systems , respectively, for the sine-Gordon lattice.

3 Discussion

These methods may also be applied to other systems, such as waves on large
biomolecules, where modulated waves are possible but taking the continuum limit is
undesirable. It is, however, important to note that the IDNLS system (2.14) was ob-
tained because of the specific form of equation (2.7). In general the relation between
an, an+, and an.. will depend on the underlying lattice. For example, when the same
expansion is applied to the KdV lattice,

I = eun+1 - eu-1, (3.1)

one obtains the first order relation

-_ -iw = 0" + 1 ee a- l0 _ e - . (3 .2 )

This will not yield an IDNLS system and so it would be inappropriate to use (1.3) as
a discretization for studying modulated waves on (3.1).

Much work remains to be done in understanding the behavior of the discrete forms
of the NLS equation. In the case where both DDNLS and IDNLS can be derived at
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the same order, one should check that they exhibit similar behavior over the range of
parameter values for which the derivation is valid. In addition, as (2.13) and (2.14)
have been derived directly, the higher order terms of each are available. This provides
for the ability to perform a more physical perturbation analysis of these systems.
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ABSTRACT

In this paper we investigate anharmonic lattices that support the formation and
propagation of Toda solitons along their chains. The main objective is to examine the
influence of Toda solitons (TS) on the Mdssbauer emission of gamma photons.
Furthermore we conclude that it can be expected that the emission of hard gamma rays may
be instrumental in producing narrow Toda solitons even at low temperatures. A
manifestation of this phenomenon could be through an anomalous increase of the
coefficient of thermal conductivity.

1. INTRODUCTION

The objective of this paper is to examine the applicability of Toda model lattices
exhibiting the M6ssbauer effect (ME) and study the consequences. Our model will employ
an anharmonic monoatomic chain with Toda interactions between sites whose nuclei are
capable of emitting gamma photons (GP). When a nucleus centered at a lattice site is

caused to emit a GP, the transition energy AEn,, in principle, may be distributed among:
a) the GP, b) the nucleus that emits the GP, c) the chain as a whole and, finally, d) a part of
the energy can be absorbed by the vibrational degrees of freedom of the chain. In the case
under consideration these vibrational degrees of freedom may both involve pure phonon
modes (PMs) and localized TSs.

A Missbauer transition occurs when a TS state remains unchanged before and after
the emission, so that the GP involved absorbs the entire energy of transition. In other
words, the emission is an elastic process.

2. THE TODA LATTICE AND THE MOSSBAUER TRANSITION
PROBABILITY

We begin by briefly considering a Toda lattice (TL) of molecules located along the
x-axis with equilibrium distances Ro between neighboring sites. The equation of motion
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for such a one-dimensional monoatomic IL with the nearest-neighbor interaction potential
U expressed by1

Uj fUn -Un-I +1+[exp(b(un-..-un)). I1 (
is given by

M _ k exp(bun) - exp(bun+i)J (2)

where M denotes the mass and un the displacement of n-th particle. The parameter k
represents the coefficient of longitudinal elasticity of the corresponding harmonic chain
while b denotes the magnitude of anharmonicity. Introducing the relative displacement as
pn = Un-I - Un a one-soliton solution of the TL problem is then given by

NO) I I + sinh2 (i) (3)

cosh2[k" (nRo- vt)]

which describes a compressional pulse propagating along the TL with the velocity v below

v - o sinh(pL) (4)

and vo = Ro(k)2 represents the longitudinal sound velocity for b = 0. Here iK denotes the

parameters of TS which defines the domain of localization (length) of a TS through
An = 21%-1. It is evident from eq. (4) that the TS propagation velocity v always exceeds
the sound velocity (v > vo). Moreover, TS's with larger amplitudes (and thus larger
parameters IR) propagate faster.

Provided the requirements for the applicability of the continuum approximation are

fulfilled, i.e. that An >> 1 pr iL << 2n, eq. (3) may be simplified as

p(x,t) = b-1 sinh 2(1L) , -=x-x -vt (5)

cosh2(R9 4)

Here xo represents the position of the TS's center and p(xt) replaced the discrete variable

Pn and, in the continuum limit we have

p() -Ro u(4) or u(4) [1- tanh(2 R- - (6)

1b + 2cosh2(_ t)

The proper normalization of the mass density distribution of eq. (5) finally gives

Ip > = -L (3Rt)I/2 seth2 [-L (x - vt)] ; xo = 0 .(7)

The energy of a single GP typically ranges from about 10 keV to approximately 5
MeV which corresponds to wavelengths from about I A to about 10-3 A , respectively. It
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is well-known that for GP energy of fi a = 100 keV and an emitting nucleus with

M = 10-25 kg the recoil energy of nucleus is ER= 0,05 eV and the width of a Dopplerline

at room temperature is AED = 0,2 eV. The above results pertain to harmonic crystals.
Since a TL is a model of highly anharmonic crystal it is clear that the local displacements of
molecules involved in the formation of a TS can cause an additional Doppler effect. In
order to estimate its magnitude we calculate the velocity vest = du/dt using eq. (6). In order
to come up with numerical estimate vows for emitting nuclei, we can use data for
propagation of TS in DNA molecules2 as follows

Ro= 3.10-10 m; k = 5,l3.l0-10 N: b =6,18.1010 m-'; vo = 1,69"103 ms"1 .

Below, we consider two limiting pictures of a TS: (a) a broadly spread soliton, over many
lattice sites and (b) a narrowly localized soliton involving only a few lattice sites. In the

first case, we take An 50 and obtain It - 0,1 so that sinhQit) - It. Consequently we

assess v = vo andVosc 1 ms-1. In the opposite case, however, when we take An = 5 and

IL = 2 it follows that v 1,8 vo andiosc = 250 m/s. It is therefore apparent that a broadly
spread TS will provide a negligible contribution to the Doppler effect. On the other hand, a
highly localized soliton pulse can cause a Doppler effect which is comparable to that due to
thermal motion at room temperature.

Consequently, when a nucleus located at a crystal lattice site emits or absorbs a
quantum of GP, the following processes may occur:

(1) A change in the vibrational state of lattice, i.e. a phonon excitation, provided the
recoil energy exceeds the Debye energy: ER > kBTD, where TD is the Debye
temperature.

(2) We predict that by virtue of a significant local displacement of the emitting nucleus, a
Toda soliton may be generated, provided the recoil energy is sufficiently large and

exceeds the energy of a strongly localized TS. Namely with f (a> 100 keV the
recoil energy can be of the order of I eV. This is comparable to the energy of a

single TS which is given by Es = 2 kb-l[sinh(iL)cosh(@) - 1]. For strongly localized

solitons spread over 3-5 chain siles we obtain p. = 2 and using above mentioned data

for DNA we find that Es = 2 eV. Thus, it can be envisaged that an atom emitting a
gamma quantum receives the entire recoil energy ER and then it may collide with a
neighboring atom. As a result of this collision and owing to the anharnonicity of the
lattice a strongly localized TS may be created. To produce a broadly spread soliton

(IL << 1) several atoms would have to be set in motion nearly simultaneously which
is rather improbable. We therefore conclude that it can be expected that the emission
of hard GPs may be instrumental in producing narrow TSs even at low
temperatures. A manifestation of this phenomenon could be through an anomalous
increase of the coefficient of thermal conductivity.3

(3) If a narrow TS already exists in the immediate vicinity of emitting nucleus, Doppler
broadening of its special line takes place.

(4) If the recoil energy is smaller than the values required in both (1) and (2) then elastic
resonant emission or absorption of a GP takes place. This gives rise to the ME in its
standard form.

We calculated the emission probability of a GP in the standard form.4 The wave
function of lattice is represented as a tensor product of the envelope of a TS (see eq. (7))

and the quantum (PMs) of the lattice iVq> = (bq)Vq (Vq!)-d/ 2 10>, where Vq = 1,2.... and

bq, b+ represents the annihilation and creation operators, respectively, for longitudinal

phonons with a wave vector q. As usual, 10> denotes the phonon vacuum. After
cumbersome calculation the probability of ME is given by
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+0.084- -0, 168a -In (8)

where we introduced the following set of denotations

W= exp (-t dt

D 2 kBTD ER (9

2 snhI) 2 p

3 [ L

and p is the momentum of emitted GP.
It is obvious that the impact of TSs on the value of the ME probability, Wif is quite

sensitive to the propagation velocity v through the relation 02 - v4. Estimating Wif in the
special case of D = 1/4 and a = 1/2 results in Wif = 0,85 which means that at low
temperatures the ME is characterized by a high probability under the specified conditions.
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BIPOLARONIC CHARGE DENSITY WAVES,

POLARONIC SPIN DENSITY WAVES

AND HIGH Tc SUPERCONDUCTIVITY
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Abstract: At large enough electron phonon coupling, the existence of bipolaronic,
polaronic and mixed states is rigourously proven for the adiabatic Holstein model at any
dimension and any band filling 1 . The ground-state is one of them which then prove the
existence of insulating Bipolaronic Charge Density Waves (BCDW). The role of the
quantum lattice fluctuations is analysed and found to be negligible in that regime but to
become essential in case of phonon softening then favouring the occurrence of
superconductivity2 ,3. When a strong Hubbard term is also present, the bipolarons break
into polarons and the ground state is expected to be a Polaronic Spin Density Wave
(PSDW). If the repulsive Hubbard term is comparable to the electron-phonon coupling,
the energy for breaking a bipolaron into two polarons can become small and we get
instead of these two degenerate structures, a pair of polarons bounded by a spin
resonance which we call "spin resonant bipolaron". This resonant bipolaron is still
strongly bound, but the role of the quantum lattice fluctuations becomes now very
important and yields a sharp broadening of the band width of this resonant bipolaron.
Thus, the strong quantum character of these resonant bipolarons could prevent their
localization into real space structures which could be insulating BCDWs or PSDWs, then
favouring the formation of a superconducting coherent state with a possible high
Tc.(For details see ref.4)
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INDUCTIVELY COUPLED LONG JOSEPHSON JUNCTIONS:

COLLECTIVE COORDINATE ANALYSIS AND I-V CHARACTERISTICS
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INTRODUCTION

The collective coordinate analysis of soliton dynamics developed by McLaughlin and
Scott for perturbed sine-Gordon equations is applied here to two inductively coupled Long
Josephson Junctions (LJJ's). It is found that the motion of fluxon (antifluxon) pairs -one
fluxon on each junction- is described very well by the ode's of the collective coordinates,
representing the "center of mass" position and velocity of each fluxon. The formation of
bifluxon states, which either oscillate or travel in phase-locked fluxon pairs along the LJJ's
is accurately predicted and verified by the numerical solution of the pde's.

We also carry out a stability analysis of the McCumber branches of our two UJ's and
successfully determine the I, V values at which the first three zero-field steps (ZFS) occur.
Increasing then the coupling parameter e, we discover that these ZFS appear at lower and
lower voltage values. The I-V characteristics we obtain exhibit certain strong entrainment
properties which may be of experimental interest, especially if they persist in the case of
many coupled LJJ's.

The plan of the paper is as follows: In the first section, we present the collective
coordinate analysis of the bifluxon states predicted by the ode's and verified by the solution
of the pde's of the two LJJ's. We then describe our stability analysis of the McCumber
solutions and show that it accurately predicts the formation of the first few ZFS,
corresponding to the appearence of 1, 2, 3, etc fluxons on the UJ's. Finally, we present the
I-V characteristics of the system and discuss their physically interesting entrainment
properties.
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COLLECTIVE COORDINATES FOR BIFLUXON STATES

It is a well-known fact that the literature on the theory and applications of Josephson
junctions has been growing steadily in the last 15 years"'. One of the moe common
approaches in many analytical and simulation studies of these junctions (in the so-called
overlap geometry) is to consider the perturbed sine-Gordon equation'-9 in the
dimensionless form

(f, - (p. + sinp = -aqp, - 04p,., -Y+ (1)

describing the phase difference q(x,t) of the eigenfunctions of the two superconductors
separated by a thin insulating barrier of length L>>), (X. being the Josephson penetration
length). These are the so-called Long Josephson Junctions (LJJ's), in which the aq, and
k., loss terms are due to normal electrons tunneling across and normal electrons flowing
along the barrier respectively.

If these losses are small enough, they can be "balanced" by the bias current term Y on
the rhs of (1), in such a way that the LJJ can still support fluxon (soliton-like) waveforms
similar to the exact kink(+) or antikink(-) soliton solutions

=p,(xt) 4tan-' exp (1-u)X1 (2)

of the unperturbed ( t=0--J3-- ) sine-Gordon equation (1). In a remarkable paper by
McLaughlin and Scott', it was shown that, within the framework of perturbation theory,
such fluxon solutions of (1) can exist, in the form

=p(x,r) = 4tan-1 exp (XU(t) 1 (3)

where the so-called collective coordinates X(t), U(t) have replaced the constant x0, u
parameters of the solution (2) of the unperturbed problem.

In a series of earlier papers"' 4, we have demonstrated that the collective coordinate
approach can be used to accurately describe the motion of fluxons in single LJJ's in the
presence of inhomogeneities (impurities) modeled by the term'

8/

- sinq _ p, 8(x-ai)

on the rhs of (1). In both the case of "microshort" (p? 0 ) and "mocroresistor" (p<O)
inhomogeneities, we showed that the ode's derived for the variables X(t) and U(t),
reproduced very well a number of fluxon "trapping" phenomena observed near such
inhomogeneities.

In this paper, we wish to turn our attention to the study of fluxon dynamics in two
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"inductively" coupled UJJs'l° described by the system of pde's

(p.- u +*sin 4p = - a ,V, + -, 1 1• P ., + e V.. (4a)

w,,-/.v+sinu = -a2V,+y2+P2•,W,+ px.. (4b)

where the a,, P,, y are as described above and e2 0 is a small coupling parameter. In a
recent work'4 , we have considered fluxon solutions of (4ab) of the form

r p(x,r) , iffl

4 tan -f' e(,,, 
J I

,=+l , where Xi(t), Ui(t), i=1,2, are the collective variables for the two fluxons.
Inserting (5) in (4) and using the McLaughlin-Scott approach leads to the system of

ode's14

+(6a)

V. + C i ''2{~~ ~ d1+ Jv ~VlV,2)1/ 2 (I+V22)112  i=2 (a
(6b)

with

U Vi U / (1 -U 2 )112 , i=l, 2, (7)

I= f sechk tanhý sech[p(ý + 0)1 d ,(8)

and

X2 -X_ 
1 ___ 

(9)

(1 -U2)"I

where we have taken, for simplicity, P,=[32=0, since these terms do not significantly affect
the behavior of the system.

Note that equations (6), in the case aC, =a2== add up to yield a linear equation for the
motion of the "center of mass" of the two fluxons
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= -a•V+ (-1 7" 02Y2 ) , V=V 1 + V24

This means, of course, that the "center of mass" of the fluxons, as t-+-, will approach the
limiting velocity

V -- • (7 • +4 (2Y21) * 0

or be stationary, if c1•y, +a2y2 -0. The behavior of the distance between the fiuxons, on the
other hand, can be found by subtracting equations (6a,b) from each other.

This was first done by Kivshar and Malomed' in the non-relativistic limit I«1,<<l,
i=1,2, in which V•Ui, p.-I in (9), and the integral (8) can be explicitly evaluated. Upon
subtraction of (6a) from (6b) one finally derives

2ec1 2 (Y2 X ) (10)
=-aX + Y - sinh-----X tanhX'

with X-=X-X-, a=a,=o2 and

Y .. (a2y2 - 0,7,) (11)

It is now easy to investigate the behavior of X(t) by plotting the potential

W(X) = -YX + AX , A = 2eo, o2 (12)
sinhX

as a function of X, in the "attractive" (A<0) as well as "repulsive" (A>O) case8'-14

For example, in the "repulsive" case, A > 0, the height of the "barrier" at X-40, W0=A
(for small y) gives the energy threshold above which the two fluxons will not be able to
form a bound state and will simply pass through each other. In Fig. l a we have put ct=O
and plotted the solution curves of (10) in the X, U plane, for a kink-antikink pair
(oT,=-o72=1, A=I, y1=y2=0.2/r. ). Starting our fluxon pair with X(0)=1O.0 and U(O)=O we
observed that the solution of the pde gave us a bound bifluxon state oscillating inside the
closed homoclinic loop of Fig.la, as shown in Fig.2a.

On the other hand, the same fluxon-antifluxon pair, with X(0)=10.1, finds itself just
outside the separatrix of Fig.la and breaks apart failing to form a bound state, as shown
in Fig.2b. Note that with the addition of dissipation (see Fig. I b), the region of attraction
of the bound state icreases considerably and the fluxons eventually come to a stop at a
distance X-=4.1 of from each other.
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(a) "" "

Figure 2. Evolution of p•, • in time and space from the numerical solution of pde's (4), with (a)
X(O)=10.0 and (b) X(O)=10.1. (The parameters correspond to those of Fig.la).

272



Had one wanted to keep them going, however, one could simply introduce an ac-
current in the UJ's, setting e.g. ¥-¥=X,+e,.cosfl in equations (4). Phase-locked oscillations
are then observed for the bound bifluxon state with frequency 1-. Moreover, for very small
damping, the fluxons are seen to get 'trapped" for a while in the homoclinic "tangle" of
the intersecting manifolds of the central unstable fixed point of Fig. 1 (which becomes an
unstable periodic orbit of period 2x/I on a Poincare surface of section). All these
phenomena will be described in more detail in a forthcoming publication".

Finally, we remark that the "non-relativistic" approximation leading to eq. (10) turned
out to work very well, in all the cases we tried. Although it is not too time-consuming to
compute numerically the integral (8) at every integration step, this may be avoided, in
general, since the predictions of eqns (6) turn out to differ very little from those of the non-
relativistic limit13.

STABILITY ANALYSIS OF THE McCUMBER SOLUTIONS

We then went on to apply the stability analysis of Pagano5 and Costabile et a116 to the
McCumber solutions

4p0 = 2am(t/k,k) , =0 2am(t/k,k) (13)

of the unperturbed ( ai=AI=-7=e=0, i=1,2) solutions of eqns (4). These are the well known
Jacobi "amplitude" elliptic functions of modulus k17, corresponding to energies larger than
those required for the kink-like and periodic solutions of the associated "pendulum"
equations: (p.,,+sinqpo=0 and io.I+sinvlo=0.

Substituting in eqns (4) the Fourier expansions

P(x,t) V fqj(t) (14)

and using the orthogonality of the cos ow. x functions one obtains one equation for each
spatial mode of (p

L

+ 0f+ 2 sinqp costex dx = - + 1 )p1 - ew,2Vu (15)

L0

and a corresponding one for NV, replacing ff.--Nf, and 0t- -) 02 in (15). Considering
then small perturbations q=po+Ap, V=-',+Auj about the McCumber branches (13) and
using some simple elliptic function identities, one derives, for each mode j, two linear
Lamd-type equations,
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+( + ) f + 1 - 2sn2(t/k,k) ]q + = o (16)

and one with qp,-4-j, ,a--a20,--02 in (16).
In the case of identical junctions, a, =ot=, P,=02=0 eqns (16) separate in the sum and

difference variables

S q + V uJ, U 9J -

into two uncoupled Lamd equations

+ (a + pwj)sj + [o(1 + e)+I-2sn2(t/k,k)] 0 (17a)

+ (a + pwj2)• + [og2(1 - e)+l -2sn2(t/k,k)]uj = 0 (17b)

whose stability (instability) regions can be separately plotted for j=1,2,3 on a <V>, L graph,
where <V>=<qp)> is the (time) averaged voltage along each junction and L is the length of

the junctions, see Fig.3.
Making use of the Floquet theoretic analysis of Lam6 equations""16 we plot in Fig.3 by

solid curves the "cusp-like" instability regions of eq.(17a) and by dashed curves those of
eq.(17b). Note that the distinction between them becomes clear as e increases from e=0.1
(Fig.3a) to e=0.5 (Fig.3b). Outside these regions, the solutions of (17) die out and the
McCumber branches are recovered. Within the boundaries of these "cusps", however, the
solutions of (17) (and hence 4p, and V,) grow exponentially and the LJJ's can support 1,2,
or 3 stable fluxons each, for j=1,2 and 3 respectively.

This is how the zero field steps ZFS1, ZFS2 and ZFS3 are formed, as we discuss in
the next section. The way we verify the validity of the above stability analysis is as
follows: Fixing a, P3, e and L we start increasing our bias currents y-=y2=y in (4),
following the McCumber branches along the I-V characteristics of the UJ's, see Fig.4.
Then, at the point of Fig.3, where we cross the lowest instability curve (cf. eq. (17b)), of
the j=l "cusp" say, we introduce one fluxorn on each LJJ and find that they persist, moving
up and down the UJ's in a stable form, for very long times.

Excellent agreement is found between the predictions of Fig.3 and the points of
formation of the first 3 ZFS even for e as high as 0.1 and 0.5. In fact, similar results were
found when we deviated from the case of identical LJJ's. Varying aý and P,, in such a way
as to satisfy oE1P,+o2=2 + 32co2 -so that the equations for ip, and Vjcf.(16), can still be
uncoupled into equations of the form (17)- we also found, for different j, very good
agreement between the predictions of stability analysis and the formation of the jth ZFS
on the I-V characteristics, see Fig.5 for j=l,2.
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with parameters ca,==0.05. P,=,0.02 and (a) e=0.1, (b) r=0.5.
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I-V CHARACTERISTICS AND FLUXON ENTRAINMENT

It is well-known that, for practical applications, one would like to be able to estimate,
control and maximize the superconducting current flowing through a Josephson junction
device. In our system of coupled UJ's, we find that we can do all this by studying the I-V
characteristics of each junction individually.

We may think of our two LJJ's as coupled in parallel, with free boundary conditions

(pý(O,t) = ij,(L,t) = W,(O,t) = 4t,(L,t) = 0 (18)

interacting via the "inductive" terms p., N1W. of eq. (4ab) respectively. We start by
following the McCumber branch for each junction, on the plane of (time) averaged voltage
<V> and current y, by eliminating the modulus k between the equations of junction 1

<V>1 = ( i Y 4a= E(k) (19)<V• •o kK(k) ' • c n

where (po is given by (13) and K, E are elliptic integrals of the first and second kind.
Similarly, for junction 2, we replace -- IW and '-')¥'2 , a,1 -"K in (19).

Then, at the yi-values where the ZFS's are expected to appear, we place on each
junction one kink (antikink) waveform, cf.(2), moving with a velocity u=u, which
satisfies-• 4

4 u,. [ai + / 2 , i=1i,2 (20)
3i 3 (1--ui2)

and solve the pde's (4) numerically until the motion of the fluxons becomes stabilized".
Then, we compute the space and time averaged voltages <V>,=<(p,>, <V>2=<xV,> and plot
them against y, and y2 respectively in Figs.4,5.

Observe in Fig.5a that the ZFSI of the two junctions, with different cti and • ,
coincides near the middle of the graph, if the initial y5 's we use are the same. We can,
however, split the two ZFSI's apart, if we wish, provided we start our simulations with
different yi's, see Fig.5b. We have examined carefully the lower parts of the ZFSI's of
Fig.5a and have found that the periods of the two fluxons, traveling up and down the
junctions, undergo a series of transitions, until these periods finally coincide, at the point
where the two curves meet'5.

A similar phenomenon of fluxon "entrainment" is observed when the coupling
parameter e is increased. As we demonstrate in Fig.6 the two ZFSI's become identical
over the full range of their existence as e varies from 0.01 to 0.5.

We also wish to draw the attention of the reader to an interesting shift of the ZFS's
of the system as the coupling becomes stronger. This effect is clearly evident in Fig.4
where we have taken identical junctions with cx, =a2, 01j =02. In Fig.7 we also show it for
ZFS3. We believe that this is an important phenomenon, since it demonstrates that the
doser one brings the LJJ's together the easier it is to observe these current "jumps" in the
performance of the system, as they occur at lower and lower values of <V> and y.
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Clearly, it would be interesting to study how these phenomena change when one
imposes a magnetic field through different boundary conditions' 9, or examines junctions
with different characteristics$. We plan to report on these questions in another publication"s.

Finally, our results may be of relevance in connection with a recent study of fluxon
dynamics in "stacked" superconducting Josephson layers". In that study, the problem is
approached from first principles and interestingly enough, in the 2-junction case, equations
very similar to our eqns (4) are derived. Thus, we hope that our investigations will be of
some use to some actual experiments, currently under way on such Josephson junction
devices, at Lungby and other laboratories around the world.
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Figure 7. ZFS-3 for coupled junctions with different values of coupling parameter e and L-4.0.
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The Editors

ABSTRACT

Long Josephson junctions have a potential as narrow linewidth oscillator at millimeter
and submillimeter frequencies. Such oscillators are suitable for use as local oscillators in
integrated superconducting receivers. The oscillator derives its existence from fluxon
motion governed by the sine-Gordon equation. The properties of this dynamical system
are discussed both analytically and by comparison to a mechanical system with similar
properties. The state of the art for low temperature experiments with superconducting
microwave - and millimeter wave oscillators is reviewed. Typically the low power output of
a single junction must be enhanced by inserting it in a resonant structure or by having
several junctions phaselocked to each other. Such systems have demonstrated power
output of the order a microwatt at frequencies between 10 and 500 GHz An integrated
receiver with all component fabricated by superconducting thin film technology is
predicted.

I. INTRODUCTION

Solitons have recently attracted a lot of interest for fundamental studies and
applications in many branches of modern technology, such as superconducting
transmission lines and optical fibers. An early review by Scott et al [1] considered
soliton propagation in a number of different physical systems within science and
technology. Here we will concentrate on soliton propagation in long Josephson
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junctions or Josephson transmission lines. The idea is to use perturbational methods
to derive properties of a lightly damped system from those of a rather similar un-
damped system for which an analytical solution is known. Since our system is highly
nonlinear such an approach is by no means trivial, and the validity of a solution can
often only be proven by a comparison to numerical solutions. Many of the ideas here
follow the original paper by McLaughlin and Scott [2] which was later expanded and
modified towards practical use in the review paper by Pedersen [3]. A good deal of
the theoretical description which for the purpose of this school is very tutorial - is
adapted from lecture notes for a course given at the University of Thessaloniki by
Pnevmatikos [4]. Finally we want to point out that a very recent extensive review by
Kivshar and Malomed [5] on solitons in nearly integrable systems is a good continua-
tion of some of the topics discussed here.

The present paper is very tutorial, but has one specific aim in mind - the use
of long Josephson junctions (LJJ) as a soliton microwave oscillator to be used in an
integrated superconducting microwave amplifier. In such an amplifier one would take
advantage of the large number of other superconducting thin film component that
have already been developed for high frequency use. Such single components include
mixers, parametric amplifiers, bolometers, filters, transmission lines, etc. They have
been tested in many experiments and are often found to be superior to conventional
components. The local oscillator is a crucial component and the soliton oscillator is a
very promising technique for that. Work in this direction is presently going on in
several research laboratories around the world. In such a Josephson transmission line
system a soliton is a quantum of magnetic flux, to = 2 x 10-0 Vs, that moves much
like a particle under the influence of bias current and losses.

It should be mentioned here that the recent discovery of high transition
temperature superconductivity has stimulated tremendously the interest in developing
superconducting thin films components. If progress in materials technology can be
made the problem of cooling can be reduced considerably since nitrogen could be
used instead of liquid helium or cryocoolers.

The paper is organized in the following way: Section II describes an easily
comprehended mechanical system that obeys the same equation as our superconduc-
ting non-linear transmission line. This system is a chain of coupled pendular. Section
Ill describes the properties of the sine-Gordon equation, and section IV discusses the
basic properties of the long superconducting Josephson junction. Section V expands on
the previous section by discussing several technical details relating to long Josephson
junctions. Sections VI treats the experimental situation in relation to using super-
conducting soliton microwave oscillators. The paper is summarized in section VII.

II. MECHANICAL ANALOG OF THE SINE-GORDON EQUATION

Th.- most pedagogical way to introduce the concept of topological solitons is
to use one-dimensional series of simple pendula the points of support of which are
connected in an elastic way through springs (Fig. 2.1). The dynamic behaviour of this
mechanical system presents a fascinating resemblance to the dynamics of fluxons in a
Long Josephson Junctions (UJJ). In the following we will show that the configuration
of Figure 2.1 is the mechanical analog of the sine-Gordon equation (SG), [6]-
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Fig. 2d: Mechanical anao of Mthe
* ~~4 sie-Gaidbn (SG) equaao I. n Oie

aupper pat the detauls for the chain of

co- coiuld pendihia amw 8iven [4 71.

We suppose that each pendulum can rotate around it's supporting axis without
being able to move along it. Due to the elastic coupling through the spring the
transverse oscillation of each pendulum affects the equilibrium of the neighbouring
pendula. Thus if e. is the angle of deviation of the nth pendulum from its vertical
equilibrium position then the equations of motion for the system of pendula take the
form:

I d.." = -Mgt sinOe + K(o,., - o) - K(e. - (.2.1

n=l,2 ..... , N

which expresses the fact that the moment of inertia of the pendulum times it's angular
acceleration is equal to the sum of the applied torques. The chain is considered to be
long enough so that we are not interested in the special form that the equations take
at the two ends of the chain (n= 1 and n=N) which is determined by the type of
boundary conditions we consider (fixed ends, periodic boundary conditions, etc.). The
equations (2.1) can be derived from the Hamiltonian:

Hp,,0e = E [ i P. gL (1-case) + -1 K (e, -O ] (2.2)
2 2

through the Hamilton equations:

dOA =aH 4'". = (2.3)
dt ap, dt M0.

From equation (2.1) we can now easily derive the more practical from:

d2e- = 02 (e.., - 2e, + 6._,) - osine. (2.4)
dt2 0

where

Wo = (KII)w , l=M12  , 2= Mgll (2.5)

I being the length of the pendulum and I it's moment of inertia, M it's mass and g the
acceleration of gravity. In the previous model we considered springs which obey
Hookes law, K being the spring's constant, so that the interactions between first
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neighbours are harmonic. When K - =00, then the pendula are uncoupled and each
of them behaves like an independent oscillator. In the opposite case the deviation of a
pendulum from it's equilibrium position entails the deviation of it's neighbouring
pendula. The excitation that is caused by the deviation of a pendulum is spread along
the chain, the more, the stronger the coupling between the pendula is (collective

excitation). In this way, applying a whole rotation at one of the pendula, we create a
localized excitation which behaves like a topological soliton whose properties we are
going to study in the following. Of cause, topologically, the rotation of the pendulum
creates a soliton only when it is done from the end of the chain. In the opposite case
it creates a soliton and an antisoliton (Fig. 2.2), something that finally leaves the
asymptotic values of the excitations at the end of the chain unchanged.

a

Fig. 22 a) Soli on n the coup•ed pen&ula chWin. b) Soliton and antion at the middle of the chaim

When the deviation of the pendula from the vertical equilibrium position is
small enough, one can expand the sine of the non-linear term of equation (2.4) and
suppose that sinee.-eo. Thus equation (2.4) becomes a linear difference differential
equation, which can be solved in classical ways. In this approximation we suppose that
the coupling between neighbouring pendula is quite strong, so that the deviation of
the pendulum causes a perturbation with large width. Then the deviations of neigh-
bouring --ndula won't differ too much, so that we can write:

2

o.., = o ± 100. + 0 ... (2.6)

where 10 is the distance between two successive pendula, e(xt)-e.(t) and e,=ae/ax.
Substituting relation (2.6) in the equations (2.4), we easily arrive at the following
partial differential equation, which is the SG equation:
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. -C.1. -u e = o (2.7)

where c0= 1lwo is the characteristic velocity of small amplitude transverse waves
propagation in the chain.

2.1 Topological solitons of the SG ation

Introducing the following new system of coordinates

X=eax , T=Pt , where =Qodco , =00 (2.8)

we obtain the dimensionless from of the SG equation:

0.r - Or + sine = 0 (2.9)

for which we should define the proper boundary conditions, eg. free ends:

OX(TO) = OX(TL) = 0 (2.10)

where L is the length of the chain; or periodic boundary conditions:

e(T,o) = O(TL) = 0, mod (2w) (2.11)

In case that the chain has "infinite" length the periodic boundary conditions are
written as:

O(T,--) = O(T,-) = o, mod (2sr) (2.12)

Searching for travelling wave solutions which propagate with constat velocity
we can make the transformation:

O(X,7) = O(s) , where s = X-uT (2.13)

where v is the constant velocity of the wave in the (X,T) system of coordinates. Now
the partial differential equation (2.9) turns to the following ordinary differential
equation:
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(1 -u• e.= -ie (2.14)

which we are able to integrate. Multiplying (2.14) by e, and integrating we obtain the
equation:

1 (1-u2) (e) = -cos0 + x, (2.15)2

where X, is the integration constant. This constant is determined by the boundary
conditions of the wave. In the general case, the wave solutions are expressed as a
combination of elliptic functions [8,9] and represent periodic wave (see fig. 2.3).

Fig. 23: An anhamonic form of peiodic soutin of the SG equato [81.

If our interest is to search for solutions of the form of figure 2.2, then we
should apply the boundary conditions:

8-O, mod(2n) and 0. 0. - 0, when N-' (2.16)

which correspond to spatially-localized solutions. In the case the constant K, equal to
unity (xl = 1) the relation (2.15) turns to:

± (s-sd)/(1u2)"' = f d(0/2)
2sinO

where so is the integration constant. Calculating the integral and inverting we finally
find the solution:

e = 4 arctan { exp [*(s-so)I(-u)J} (2.1

which in the original system of coordinates becomes:
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B(x,) - 4 arctan ( exp[*y(x-xo-vt)ld} (2.1s)

where x0 is a constant which determines the position of the center of mass of the
solution, v= vco is the wave velocity, y =(1-v2/cO2)' is the Lorentz factor and d =CO/n.

The plot of solution the (2.18) is a "kink" which represents a whole rotation of
the pendula chain around its axis (0:0 -. 2r). This rotation is realized around the
position x0 and is done within an area which is approximately determined by the
quantity:

D = 2% d (2.19)
Y

which is the width of the solution. The more the coupling of the pendula becomes
stronger than the gravitational attraction (co> > 00), the bigger the quantity D be-
comes, which means that the width of the soliton is getting larger. The width D
depends also on the wave velocity (through parameter y). For v-=0 we have y = 1 and
the which D takes its maximum value which corresponds to the static form of the
solution. When the velocity v increases, the soliton becomes narrower increasing its
slope, but it always remains "subsonic" (v< C). When v-'cO, the soliton becomes very
narrow and the approximation of the continuum limit no longer holds. Then the
descreteness effects appear. If we want the continuum limit to hold then we should
always have d/y > > 10. Only in this way the SG equation describes correctly the
dynamical behaviour of the figure's 2.1 system. In the opposite case we should return
to the equations (2.4). The (±) signs in (2.18) solution determine the polarity of the
wave (see fig. 2.4). The (+) sign corresponds to a kink (positive rotation) and the (-)
sign to an antikink (negative rotation).

2n • 0" X

Fig. 24 Typical form of
0 the kink (a) and antikink

21 (b) sobduts of SG equa-
8 N b. dion.

The SG equation is a totally integrable nonlinear differential equation with
partial derivatives which can be solved and studies analytically with much more
elegant and mathematically complete methods.

2.2 Energy and particle character of sollton

The SG equation can be derived from a Hamiltonian density which has the
form:
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H(p,0) [p 2 + 02. + 4 sm2(of2)J (2.20)
2

through the field equations:

or_ 8H (2.21)ap

PT - [- •+ 2sW0/2) cos(o/2)] (2.22)
86

these equations are the continuous analog of equations (2.3). Substituting the kink or
antikink solution (2.17), where s = X-uT, into the Hamiltonian density (2.21) and
integrating, we take the soliton energy in the dimensionless form:

E.= f H(pe) dX = 8y (2.23)

We can also make this calculation in the original system of coordinates. From the
solution (2.18) we notice that:

e,= (2y/d) sech4* and 0, --- , (2.24)

1 2 - ! (cJO0 y)2 (0,9 = 1 - cosO (2.25)
2y 2

Combining (2.24) and (2.25), the soliton energy in full dimensions:

E. = (112) f [0ý + co" + 202 (1-cose)A (2.26)S10

takes the form:
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E: = (4C10Zd0), (2.27)

which can also be rewritten as

E, = .2 (2.28)

where co is the characteristic velocity for the medium (the velocity of "sound" in the
chain) and

M = mNy = mo (1-;lco)-% (2.29)

The quantities

Mo = 1od and E(O) = 2 (2.30)

are the mass and the rest energy of the soliton (static soliton) respectively. The
relation (2.28) is the well-known Einstein's relativistic formula. The SG soliton has a
relativistic particle character, since its mass increases with velocity and becomes
infinity when v -* co. We notice that the soliton energy can never be zero. The
minimum value of the energy that a soliton can have is the rest energy. The least
possible rest energy of the soliton is needed in order to make a rotation of the
pendula chain. Thereafter every offer of energy to the soliton changes only its kinetic
situation, changing its width (mass), until a second soliton is created and so on.

The SG equation of the form (2.9) seems, thus, to be the "model" equation
both for the mechanical system of figure 2.1 as well as for the Josephson transmission
line as we shall see next. It is thus worth, in the next chapter, to proceed in a deeper
analysis of the SG equation and its solutions. The mechanical analog will be very
useful to us in understanding what is going on inside a Josephson transmission line
(JTL).

III. THE SINE-GORDON EQUATION

The sine-Gordon (SG) equation can be derived from a Lagrangian density of
the form:

L= * - 2(cos4 -1)] (3.1)
2
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where P(x,t) represents a continuous field changing in spaces and time and 4P=4/ax,
,P,=B/Bt. For example q(xt) may be the function of the pendula displacements of
the mechanical analog of figure 2.1 in the continuum limit. If we insert equation (3.1)
into an Euler-Lagrange eqnation of the type:

a a.L a aL aLW - -) - -4 0 (3.2)

we have the partial differential SG equation:

-÷sin* =0 o(3.)

As it is known every solution of (3.2) satisfies Hamilton's principle, which
supposes that the integral f Ldxdt, is an extremum. With the choice of signs we have
made, the stable solutions of the SG equation will correspond to a minimum and the
unstable to a maximum of this integral. Inserting now the corresponding momentum
density:

- aL= , (3.4)

we take the Hamiltonian density H with the help of a Legendre transformation of the
type

H = L. - J,0, (3.5)

where

H= f- Hdz= f {1 [(Oy (,0,)2÷ 2(1-cos4)]} d (3.6)

is the total energy of the system (Hamiltonian).

If we concentrate our interest in solutions for which

lim$ =2xm and lim 4 =2irn (3.7)
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where m and n integers, then beside the total energy H which is conserved we can
define the density of rotations:

aL" = (3.8)

so that the total number of rotations

R -f pdx 2(m-n) (3.9)

is also a conserved quantity. In fact the quantity R equals the number of fiuxons
(positive rotations) minus the number of antifluxons (negative rotations).

In addition to the quantities (3.6) and (3.9), another conserved quantity is the
total momentum of the system

P= - f 4 ,0o, (3.10)

One can show that the SG equation has an infinite number of first integrals
(conservation laws), thus being a totally integrable system [8,10]. This means that we
can exactly equation (3.3) and calculate the whole spectrum of it's solutions. In the
following, however, we won't enter into such a detailed mathematical study.

The potential V(ip) = 1-costp of Hamiltonian (3.6) creates for the system an
infinite number of ground states. Thus, every change of the function 9(xt) by 2wr
leaves the system unchanged. Moreover, the SG equation is invariant under Lorentz
transformations of the type:

where y = (1-u2)"% is the Lorentz factor and u is the relative velocity of the two
reference systems (Xt) and (X',t').

3.1 Small Amplitude Waves

If we expand the potential V( 9 ) = 1-cosq around zero, assuming that i < < 1,
then equation (3.3) takes the very well-known form of Klein-Gordon equation:
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. - ,. =, *(3.12)

which admits plane wave solutions of the form:

#(Xt) = Re (, 0exp [i (kr-at)J) (3.13)

obeying the dispersion relation:

0= 1 k2  (3.14)

A

Fig. 3.1 Dispersion relation
for small amplitude waves

"1of the linearized SG
•, equation-

0

The dispersion relation (3.14) resembles to the corresponding relation for the
transverse waves in plasma. Thus, in correspondence the solutions (3.19) are called
"plasma waves" and the frequency (a = 1, which determines the beginning of the zone
for the allowed frequencies is called "plasma frequency". We can easily see, using the
mechanical analog, that excitations with frequency W < 1 do not propagate in these
media. From the relation (3.14) the propagation medium is "dispersive", that means
that the group A-,locity (u = dw/dk) and the phase velocity (ph = W/k) of a wave
packet are different and derpend on the wavevector k of each component. As a result
the wave packet progressively decomposes when it propagates in the nonlinear
medium mentioned above.

3.2 Simple Solutions of SG Equation

If we do not restrict ourselves to the study of small amplitude waves then the
nonlinearity of the potential V(qi) = 1-cosip balance the dispersion of the propagation
medium and permits the SG equation to admit even localized solutions with the
characteristic stability of solutions.

If we set the condition that we look for travelling wave solutions, that is waves
that are propagating with a constant velocity v, we can perform the transformation
s =x-ut, where v =v/c, v being the wave's velocity in the original system and c is a
characteristic velocity of the system (e.g. the light velocity). Thus, partial differential
equation SG turns to the ordinary differential equation:
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(3.15)

where .,=dt/ds. Multiplying by qp and integrating equation (3.15) we get:

( 1_u2 ) .2 - 2 (E-cos+) (3.16)

where E is a constant of integration. The values of the parameters E and u are crucial
for the definition of the type of solitons.

Equation (3.16) admits two groups of solutions, the "magnetic" solutions, which
propagate with velocities less than the characteristic velocity c, (uz< 1), and the
"electrice, which propagate with velocities larger than co (u2> 1) [9j.

3.2.1 *Magnetic" type solutions

In the case, where u2< 1, equation (3.16) turn to:

y (s-sd = f d* (E-cs#bV" (3.17)

where y = (l-V2 )"K is the Lorentz factor and so is the new constant of integration. In
this point it is better to distinguish three cases: E=1, E>1 and E<1.

a) 1st case (E= 1): Solitary waves

Calculating the integral (3.17) when E= 1 and inverting the expression that
comes out, we end with the solution:

4(s) = 4 arctan {exp [,y(s-so)] (3.18)

The solution (3.18) represents a spatially localized "kink" wave. For the (+)
sign inside the argument, the wave is coming with zero value from -c and ends with
the 2w value at +co. For the (-) sign we have the opposite (see fig. 2.4). The values 0
and 2w represent two energetically different degenerate ground states of the original
system. The (1-cost) potential gives to the Hamiltonian (3.6) an infinity of such
ground states. The transition from one ground state to the other is realized in a
localized (limited) region of space and the waveform that results is named kink
(antikink) respectively for the + (-) sign. Such a transition between two different
ground states gives to the wave an additional topological stability and permits its
existence even when its velocity uis zero (static kink). These properties lead us to give
at the sine-Gordon kink the characterization of a topý1Wocal soliton. For the diments-
ionless form of SG the width of the wave (3.18) is defined only by the parameter
y = (1-n2)"'. The transition width between the two ground states is proportional to the
quantity =21r/k, where k=-y. Thus, when u =0 the kink takes the largest possible
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transition region in space before ending at the constant asymptotic values. When u- 1,
then the kink becomes infinitesimally narrow (step function).

From the relation (3.18) we can show that:

#, = ±2y sech[y(X-so-ut)] (3.19)

which has the form of a positive (negative) pulse for the + (-) signs respectively. When
u- 1, the pulse (3.19) tends to a "6-function".

Fig. 312 Head-on coilision of a pair of kink-antikink solitons of the SG equation [8].

In figure 3.2 we give the results of a simulation of the interaction between two
kink-antikink solutions of SG equation representing the quantity (p.. the finite length
of the chain in the numerical simulation does not affect the solution which was
calculated for an infinite length system (SG equation) because the soliton solution is
localized.
We may show that:

- - u(3.20)

where y is given by (3.18) and therefore the momentum (3.10) of the system when it
includes one such soliton is given by the relation:

P*, = U f d (3.21)

The energy of the kink solution will respectively be given by the integral (3.6). So, if
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we use the relation:

(3.22)
2

we get:

E= f dx (3.23)

Thus, calculating the integrals (3.23) and (3.21) for the solutions (3.20), we have:

E, = 8y (3.24a)

and

P. = Buy = uE, (3.24b)

which are the energy and momentum of the kink/antikink soliton, for the dimension-

less form (33) of the sine-Gordon equation, related by E, = (82 + P2)%.

b) 2nd case (E> 1): Helicoidal waves

In the case where E> 1, equation (3.17) takes the form:

±2ys = few, d* [A+sin 2(+/2)]-V (3.25)

where A = (E-1)/2>0 and 0<A_•I. So, defining the new variable r = cos(fp/2) and
inserting the parameter k (0< k < 1), where

A = klk2 and k,' = 1-k2  (3.26)

the integral (3.25) becomes:

which is an elliptic integral [11]. The final solution for 4p = arccos (2r), is [9]:
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-yslk = dr [(I-_r) (1-klr2 )j- (3.27)
I0

#t0(s) = 2 mcsi[±sn(yssk, k)] + x (3.28)

where sn(ys/kk) is the well known Jacobian elliptic function [8] and K2< 1. For small
values of k2, the function c(s) increases (decreases) monotonically for the + (-) sign.

If c(s) represents an angle, then this solution represents a monotonic rotation
towards one direction, that is a helicoidal wave. In the limit k2-'0, we have sn(ys/kk)
= sin(ys/k), hence V(s) = r + 2ys/k. Finally in the limit where K12=1-k2 < < 1 the
sn(ys/k,k) periods is infinite and the elliptic function turns to the tanh(ys/k) hyperbo-
lic function, so the solution (3.28) takes the form of the kink solution (3.18).

c) 3rd case (E< 1): Oscillator waves.

In the case where E< 1, equation (3.17) takes the form:

* 2ys f ' Ods [sine(4W2) -E]- (3.29)

where

2B= l-E>O and O<B<1/2 (3.30)

if now

B = k,' = 142 and T sin(4I2) (3.31)

then

*YS f dT [(1-Tý (7 K - (3.32)

which is an elliptic integral. The final solution for p =arcsin(2r-) is:
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+(s) = 2arcaa [d&ys/k, k)] (3.33)

The solution (333) represents a nonlinear oscillation around the ground state.

3.2.2 "Electric" field solutions

In the case the solutions are always accompanied by "Cherenkov" tadiation
while they propagate, which is not included in the mathematical expression of the
solutions [9]. For u2> 1, equation (3.16) becomes:

*2*' y(S-so) f d4(coa4.-A)" (3.34)

where y0=(u2 )-). We can now distinguish, as previously, three cases: E> 1, E =l,
E < I and obtain solutions of similar form with those of the previous paragraph. One
can look, though, for more details in [9], since the case 0

2> 1 is of less physics
importance.

3.2.3 "Breather" waves

Using more complicated techniques [8-10] we are able to calculate solutions
with two, or even more solitons and antisolitons. The superposition principle does not
hold here. The two soliton solutions, which are in certain finite distance from each
other, will also contain a term that describes their interaction.

Under certain conditions a kink and an antikink can form a bound state with
less energy than the one that the original compounds had. Such a solution [8-10] is
called "breather" (see fig. 3.3) and is given by the formula

#a(X,t) = 4 arctani(la/o-l)% secheOsineo (3.35a)

where

09 = y(l-4.)" (X-so-ut) , 0o = yc.R[t-u(X-sod (3.35b)

The breather is a packet of oscillations, whose envelope waveform oscillates in time
(see fig. 3.3.) with frequency cn (0< wB < 1). Inserting the solution (3.35) in Hamiltoni-
an (3.6) and integrating, we calculate breather's energy:

Es = 16y (1-4%) (3.36)
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Fig. 1- Evohdon of two b,,ather solitoas of the SG equaim. The fiat has zero veloiy of propapaon
while the seond is mowng to the ight 181.

where 8y is the energy of one kink. From (3.36) we get that:

For w - 0: Ev - 16y (2Mins)

For w, - 1: E -. 0 (smallaMiplinudeoscilltions)

it is worth noticing that since to < 1, breather's frequency lies inside the gap of
the dispersion relation of figure 3.1. From the relation (3.36) it is obvious that
energetically, breather is more economic than a kink and an antildnk together, a fact
that explains breather's stability. The breather soliton is a non-topological soliton,
because it corresponds to an excitation of the same ground state. The pendula start
from zero angle, in some region of the chain they make a r-angle and without
performing a rotation they return back to zero angle. The breather soliton cannot
exist static. Even though it does not move from its position, at least its internal degree
of freedom (internal oscillation) will evolve (0B÷0).

The solutions we calculated in this chapter correspond to a system with
infinite degrees of freedom, where we don't have to define boundary conditions. The
simulations we presented correspond though to limited systems. The reader who has
the mathematical interest to investigate SG solutions for specific boundary conditions
can look at the references [8,10,12,13].

A complete (general) solution of the SG equation will be composed of kinks,
antilinks, breathers (discrete spectrum) and oscillatory (periodic) wave solutions
(continuous spectrum). An arbitrary wavepacket, with given energy, which is initially
offered to a system which is =WIy described by the SG equation, will asymptotically
decompose to a well defined number of kinks, antikinks, breathers and periodic waves.
The quantity, the quality and the exact values of their parameters and the dynamics of
the solutions which will arise can be exactly predicted by the SG equation with the
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help of the mathematical technique: "Inverse Scattering Method" [8,10,14,15] which is
something like a nonlinear generalization of Fourier transform, where the Fourier
components are now the links, antikinks, breathers and the nonlinear periodic
oscillations.

IV. LONG SUPERCONDUCTING JOSEPHSON JUNCTIONS

One of the most characteristic applications of the sine-Gordon equation and
of the theory of topological solitons in general, is the physics of long superconducting
Josephson junctions.

4.1 The Josephson effect

Several years after the discovery of superconductivity [16] and five years
beyond it's theoretical interpretation [17], Cambridge's postgraduate student Brian
Josephson published the "possible" theoretical realization of the superconducting
tunneling effect [18]. One year later Anderson and Rowell verifies experimentally
Josephson's discovery [19].

When we have two simple conductors (1 and 2) which are separated by a thin
oxide layer, in the general case, the insulating oxide acts like a potential barrier which
stops the flow of electrons between the two superconductors. When, though the
insulator is thin enough (10-20A) then, applying a small external potential difference,
some electrons are able to penetrate the potential barrier and give conductivity. This
is the well known quantum tunneling effect. The current-voltage relation for small
voltage is ohmic.

When the temperature gets low enough (lower than some critical temperature
T•) some materials become superconductors. That is, they present zero electric
resistance and become perfect diamagnet (the magnetic field penetrates the material
only into a depth kI, which is called London penetration depth, while in the interior
of the material we have B=0). Josephson wanted to investigate if tunneling effect
exists when we have a junction between two superconductors separated by a thin
insulating oxide.

I we consider two conductors S1 and S2 (see fig. 4.1) then as soon as the
temperature of the system gets below the critical temperature T, many of the
electrons of the two superconductors form pairs (Cooper pairs) in which the two
electrons have opposite momentum and spin. Due to their bosonic character Cooper
pairs are able to "condense" in large superconductive states for each superconductor.
If Y1 is the probability amplitude for the superconducting electrons in the first
superconductor and Y2 in the second, then the two wavefunctions will satisfy the
following system of time-dependent Schr6dinger's equations [20].

Al , + (4.1a)
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a,.
"l -=E F2r2 4+ K*I (4.lb)

where h=h/2w is Planck's constant and K is a constant which depends on the junction
and expresses the possibility that each wavefunction can spread to

....... Sa

Fig. 4.1: Suep=e uding
juncion and the core-

9J ~sponding RJwaw 1fimcdo
'L 'PR

z

the other superconductor. (See fig. 4.1). For reasons of simplicity we consider that K
constant is the same for both the superconductors and E, =-E2 = E. While

E, - F2 = 2E - qV (4.2)

where q=2e is the change of one Cooper pair. The Y, and Y2 wavefunctions are

complex functions, so they can be written in the form:

*1 - P exp(iO1 ) wad *2 = P% exp(i0) (43)

where p is the Cooper pairs density and ip the common phase for all the pairs. For
reasons of simplicity we use again the symmetry of figure 4.1 and suppose that
PlfP 2 fP.

In such a superconductor the current density which penetrates is given by

J = p -L (hV6-2eA) (4.4)

where e and me are the electronic charge and mass respectively and A is the vector
potential [7,20].

When the thickness d of the insulator which separates the two superconduc-
tors become very small (d< 100A), then we initially notice that free electrons start to
penetrate it, forming the so called q*:ntum tunneling effect. When the thickness is
further reduced (d<30A) then the first Cooper pairs also begin to penetrate the
insulator. In this state the two phases op, and 92 are no longer independent since they
start to have overlap with their opposite superconductor over the insulator. This is the
so called Josephson effect.
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Inserting the wave functions (4.3) in the equations (4.1) and combining the
previous relations Josephson proved the two following important equations which are
known as "Josephson equations":

J=:Jou ain (4.Sa)

V (4-5b)

where

S2 -41t (4.5c)

Jo = 2KprA (4.5d)

4pbeing the phase difference between the two wavefunctions and J0 the maximum
amplitude of the current density that penetrates the insulator. Josephson's first
relation tells us that the current density which flows in the junction depends on the
phase difference (p having J0 as a maximum value. Josephson's second relation tells us
that the voltage drop between the two superconductors is proportional to the time
variation of the phase difference q#. From relation (4.5b) one can calculate the phase
difference 4V with the approximation of a constant:

VI)= 0 + (2eA)f K)t (46)

a) DC Josephson effect: If we suppose that V =0, then from (4.6) we can see that the
phase is constant but not necessarily zero. When, though, 4P = (PO,0 then relation (4.5a)
tells us that the current I=l0sinqi is different from zero, and it can reach the maximum
value Ie. That is, if one considers a closed superconducting loop, it is enough to stop
somewhere the continuity of the superconducting phase with a thin insulating layer
and one will observe the appearance of small supercurrents with biggest possible
intensity the quantity 10 (Jo X surface), without the presence of an electric source. This
remarkable prediction was made for the first time in 1962 by Josephson [181 and was
experimentally verified one year later by Anderson and Rowell [19].

b) AC Josephson effect: If we now apply a constant voltage V=V0 , then integration of
relation (4.6) will give: V = qo + 2eV0t/% and Josephson's first relation (4.5a) will
turn to:
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J - sn (*o + 2eVO) (4.7)

hence an alternating current will appear in the junction, having the frequency:

w., - 2%f, = 2. VI (4.8)

Since % is a very small number, the frequency w, with which the current oscillates is
very large, hence for small voltages no remaining current that can be measured is
observed. In fact, since the temperature is never zero, a small current due to the
"normal" electrons is observed.

The total behaviour of DC and AC Josephson effects is demonstrated in
figure 4.2, showing the IV characteristic of a Josephson junction. The dotted line
represents the current-voltage relation in a usual junction between metals. In a
superconducting junction, for V =0, a current that can reach up to the maximum value
I appears. This state corresponds to a static value of the phase q4 =arcsin(I/10). As
soon as we give small dc values to the voltage between the two superconductors the
current takes negligible values due to the enormous frequency of its oscillation. The
small non-zero value in the theoretical curve, is due to the thermal flow of normal
electrons through the insulator. Since the temperature of the junction in the ex-
perimental curve (42b) is very low (T= 1-52K), this branch is inexistent until a critical
voltage value. For junctions that work at higher temperatures this branch become
more obvious and is called the quasiparticle or McCumber branch. When the voltage
reaches a critical value (2A - ±2.5mV), then the McCumber branch has an abrupt
ascent and tends to follow the dotted line of the ohmic behaviour. This critical -ialue
of the voltage corresponds to the energy that is higher than the electronic energy gap
A between the two superconductors that form the junction, hence the phase 9 is
changing in time with a frequency proportional to the external dc voltage.

IZ

a b
FI& 4.2- IV charadct for a Josephson Juncdo, a) Theorecafl wwfrom osephson's rlation.
b) Oquical eqperimntal IV charactaeistic for a Sn-Sn5O-Sn junction at T= L52K tempealr [7].
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Another way to obtain supercurrent, using relatively small voltages is to consider a
small alternating current:

V Vo + V=cswct (4-9)

where

40) =o + 2eVotr• ÷ (2eVJ~t)uineat (4.10)

hence, using the approximation: "sin(x+ Ax) =sinx+ Axcosx", when Ax is small, we
obtain:

J=Jo [sin(*+0 2eV0O) + a2eYVw) linot cos(4o+2eVeth)] (4.11)

The first term in relation (4.11) has zero mean value, but the second one does not if

w=2eVo/%. This resonance phenomenon was experimentally observed by Shapiro [21].

4.2 Influence of an external magnetic field

Considering an arbitrary geometry of a Josephson junction and taking a cross-
section of it we have the figure 4.3. In order to derive the equations that govern the
electrodynamics of such a Josephson junction we will follow Barone and Paterno's
presentation [7,22].

A, A2

Fig. 4.3: Cross-section of a
A .X __ Josephson junctim The

y.Aiom 7he dasheda C1  C2 z pats show the penedofnlSdepth IL of te fedi

Al ! Hy te two superlwndofs
-'to*- [7].

+- d "----

Let us consider the Josephson junction under the influence of a magnetic field field B
which is applied in the y-direction (see fig. 43). The relation (4.4) for the current
density of each superconductor easily takes the form:

+2 = (2C/) (mt/2e 2p A) (4.12)

where A is the vector potential which is connected to the magnetic field B through the
relation V x A = B. Integrating along C1 and C2 contours we have:
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#16x-itd) - *,(x) = (2eft) fc, (A+mJ2eP) dW (4.13a)

#b(x) - ,,(x+dx) = (24A) f (A+mA 42p) to (4.13b)

In the choice of the integration paths we take care that C1 and C2 do not penetrate
deeper than the dashed regions of figure 4.3 outside of which the supercurrent J is
zero (London penetration depth). We also take care that J is perpendicular to the
parts of the contours Cq and q2 which are orientated towards the x-direction, hence
the second parts of the integrals (4.12) can be omitted, thus:

,x+dx) - Vx) = [4lb(X+d) - '02,(x+dx)] - [,,.(x) - *,.(X)]=

(2e/) [ if A- + f A-&]

If we also neglect the width of the insulating barrier, we have:

#(x+dz) - 4(x) = (2elh) f A • (4.14)

Using Stoke's theorem integral (4.14) can be replaced by the surface integral of the

magnetic field, hence:

fA -X f V x A) s =- B( , 2 ÷t (4.15a)

and so

d4/dx= - B, (4.15b)

where d=. 1 +;A2 +to, 11, -2 being London's penetration depths and to the thickness of
the dielectric barrier. Integration relation (4.15) we have:



~ BS

S2eB•d x + +o (4.16)

Thus, relation (4.5a) of Josephson effect in the presence of an external magnetic field
becomes:

2edB
J =: J sin(d x + ) (4.17)

which indicates that the penetration supercurrent is spatially modulated by the

magnetic field.

4.3 Electrodynamics of Josephson junction

Supposing now that the magnetic field has a contribution to the x and y
directions (B,=0):

a.2eB~d

and differentiating we obtain:

o-24 2ed aBY (4.18a)

- =_ aB x (4.18b)

ay 'A ay

From Ampere-Maxwell's law from electromagnetism we have:

VxB =%+ - E (4.19)
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which in our case turns to

Ma y, + e P a s ( 4 .2 0)

ax aa1

and from the Josephson relation J=Josinf we get:

+ + osO dV (4.21)

where e = e, co, is the dielectric constant, A is the magnetic permeability of vacuum
and E=V/to. Thus, using Josephson's second relation we obtain the following two
dimensional SG equation:

*-2 +(*,+*) + a Sin* = 0 (4.22)

where

Co = N1 , , Qj = (2eJote/e) (4.23)

Equation (4.22) determines the spatially two dimensional spatiotemporal dynamics of
the phase difference q between the two superconductors, which is connected with the
current density J and the potential difference V between the two superconductors.
The typical thickness of each superconductor in a classical geometry [3,7,22] is 4000k
The London coefficient 11 of the magnetic field's penetration depth inside the
superconductors, is 500-16000, while the supercurrent's penetration depth which is
defined by the Josephson coefficient:

I = O(2 Od)1' = c.Q1, (4.24)

is of the order of 100 jtm. The maximum value for the density of supercurrent lies
between 1-106 A/cm2. The characteristic Josephson frequency fj=nj/ 2 w (the so called
plasma frequency) takes values 103-101 IHz, where rk =c 0/kj and co is the light velocity
inside the dielectric being typically 5 percent of the velocity c of light in vacuum.

We can very easily understand the physical meaning of the three parameters
Ij, cO and nj making the following simplifications:

Let us consider the one dimensional, static form of equation (4.22):
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__ =-s~n(4.25)

where q= (x), then for 9< <I we have sin~-q and the linearized form of (4.25) will
accept solutions of the form:

+.(x) - Ae-41-S (426)

which means that .j is the characteristic length for an essential change of the phase.
Beyond this length the phase q(x) is zero, hence we do not have supercurrent. The I, j
penetration depth of the supercurrent (Josephson penetration depth) also defines
whether a junction is called "small" or "long" in a certain direction.

4.4 Small Josephson Junction

If we consider a junction with figure's 4.4 geometry, where W and L are small
enough that WL< < Ij then the phase 9(t) has no longer spatial dependence, hence
equation (4.22) takes the simpler form:

+, - D" sio = 0 (4.27)

which describes a simple harmonic oscillator ("pendulum") which for small amplitudes
of oscillation (where sin9 -9p) oscillates approximately with the high eigenfrequency
nj, while the phase is the same everywhere in the junction's surface at a given time.

z

FA 4.4 Small ophson jndon (tw *ffff omVwt).

The frequency nj is called plasma frequency and for the linearized form of equation
(427) one obtains the dispersion relation of figure 3.1 which is given from the
formula:
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2= Q2 2k2 (4.28)0o j +: cok,

For frequencies lower than the plasma frequency rzj the oscillations decay inside the
dielectric. Thus, flj represents the lowest frequency with which an electromagnetic
wave can pass through a Josephson junction. This frequency is typically of the order of

10°Hz. The extremely high frequency nj and the remarkable properties of such a
junction make it an interesting electronic device for applications [7,23].

4.5 Josephson transmission line

A typical geometry for a Josephson junction is that of figure's 4.5. The
construction of this junction is such that only in the x-direction the insulator has length
larger than the Josephson penetration length (L> > Xj, while W < <Aj and t < <W).
Then the Josephson junction takes the form of a waveguide.

A•L2 W

Fig. 4.5: Typcal configuration for a long superconducting Josephson junction [22].

The junction of figure 4.5 is a long superconducting Josephson junction and it
is described by the equation:

_ - C + Q5 sVn = 0 (4.29)

where co plays the role of a limiting velocity with which the phase (p(xt) wave solu-
tions of equation (4.29), cannot exceed. Swihart has shown that co is the light's velocity
inside the dielectric of the junction [24] which is sufficiently smaller than the velocity c
of fight in vacuum (co-c/20). The velocity c0 in a LJJ is often called Swihart velocity.

One can describe the lJJ with the help of the hypothetical equivalent circuit
which is called "Josephson Transmission Line" (LTJ).
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b) v ~ lsr

d ...

Fig. 46. a) LoMgjoseplUon wncdon (UL) b) Simple Josephson osciltor (eklec analog of a small
josephson junction) c) Josephson transmission line (electric analog of a long Josephson junction).

If we call L the inductance per unit length that the long Josephson junction
has due to the storing of magnetic energy in the two superconductors, which reaches
the 1L depth (London penetration depth) and in the insulator with to thickness, then
in MKSA units, L is given by the type:

L = Io (2 1L + t0 )W = IPd/W (4.30)

where go = 4w x 10-7 H/m is vacuum's magnetic permeability, W is the width of the
junction and to the insulator's thickness.

If we also call C the parallel capacitance of the superconducting line per unit
length which is caused by the electric energy stored in the dielectric, then:

C = Welto (4.31)

where e = eTeo and eco=(1/36r) x 10-9 F/m is the dielectric susceptibility of vacuum
and CT the relative susceptibility which depend on the junction material. Thus,
defining an inductance and a capacitance per unit length for a LJi, we are able to use
the electric circuit of figure 4.6c. Thus, applying Kirshhoff's low we can write:

Mx A = (V-dI) - V (4.32a)

i - (0+d) = Cdx aIv + Jodx sin4 (4.32b)
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where di and dV are the variations of current and voltage in the elementary section of
the line dx. Simplifying relations (432) we get:

L &(4.33a)

jj C l"• - sin (4.33b)

Differentiating (4.33a) with respect to x and substituting in (4.33b) we have:

11 7I0 a*V- we LT (cKIJoi* (4341)Hence, differentiating Josephson's second relation and substituting in (4.34) we get:

-1m " L/C4•m + LJo 1 sin't (4.35)

from where, integrating with respect to t and making the integration constant zero(external current doesn't exist) we obtain equation (4.29) with

CO - (LC)-A 4Md Qrt = (2eJdo*• (4-W6

where L and C are given from relations (4.30) and (4.31).

4.6 The Flwxon

If we now use as a length unit I. = (%/2eJoL)' and as a time unit ail =
(C/2eJ0)", then equation (4.29) takes the following dimensionless form of SG
equation:

4ýTr - *x, + sin = 0 (4.37)

where
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T t/Q) and X x/;, (4-M8)

Everything we have previously said for SO equation obviously holds now for IJJ. The
soliton solution of (4.37) has the form:

*= 4arctan ( exp[*y(x-xo-vT)] } (4.39)

where v is the soliton's relative velocity, y=(1-u2)" is Lorentz factor and x0 is it's
initial position (for T=O).

Having now the form of the spatiotemporal variation of the phase 9(xt), we
can substitute (4.39) into Josephson's second relation (4.5b) and estimate the voltage
V between the two superconductors.

V= (4.40)

while from relation (4.33a) we can respectively estimate the supercurrent that
penetrates the junction:

= - * (4.41)

In fact, of course, the mean values of 4p and qt should be measured in order to obtain
the i and V quantities.

The phase 4v is also related to the magnetic flux 9 of the junction through the
relation:

2 = (4.42)
,0

where to = t/2e = ur%/e is one flux quantum. Since the solution (4.39) entails a
change of phase by 2r, this means that the magnetic flux changes by a flux quantum
to. Hence, the propagation of a soliton along the junction is equivalent to a magnetic
flux's quantum penetration through the junction. This is a reason why the soliton (and
the antisoliton) in lJJ is called fluxon (and antifluxon). From the relations (4.40) and
(4.41) we can connect the magnetic flux with the potential difference between the two
superconductors and the supercurrent that penetrates the insulator respectively:
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- (4.43)

It is obvious that since 4p(xt) and O(xt) have the form of kink/antikink the V(xt) and
i(x,t) quantities will have the form of positive/negative pulse respectively. Thus,
applying a potential difference between the two superconductors we expect to detect
at the ends of the junction the periodic appearance of current and voltage pulses.
Depending on the intensity of the applied voltage we will have one or more fluxons.

The small amplitude of the magnetic flux quantum (# -2xlO"1 Vs) and the
large velocity of the response of a Josephson junction (#j- 101 Hz) make the experi-
mental measurement of these quantities very difficult. The first succeeded measure-
ment of a many-fluxon waveform was made in 1976 by Scott and his collaborators
[25]. While the experimental detection of a single fluxon was performed in 1982 by
Matsuda and Uehara [26]. It is obvious that the technological completion of the
methods which will make worthy fluxon physics is still in progress.

From the first Josephson's relation we obtain the density of supercurrent.
Substituting the one soliton in this relation we have the plot of figure 4.7 from which
we see that the passage of the supercurrent in a certain time is made in a localized
portion of the junction. Letting the time evolve the penetration window of the
supercurrent scans the whole length of the junction in the x-direction. From figure 4.7
it is understood that the supercurrent makes a loop of entry and exit for the Cooper
pairs, which circulate from one superconductor to the other without going away from
the insulator more than distances of order uv. The loop (fluxon) moves forth and back
along the junction reflecting each time at the ends of the junction.

"AL 0.50

0. 0

-0.5

-1.0
I I 1 I I

0 2 4 6 8 10 12

X

Fig. 4.7: The kink soliton (dotted line) for the phase 9/21 and the current fluAn (continuous line) [271.

The use however of the integrable SG equation (4.37) for the description of
the dynamics of a LJJ is only academic. The quantitative derivation of the results we
discussed and their connection with experiments demand the presence of a number of
terms in SG equation which are related to the losses of the system, which up to now
for pedagogical reasons had been omitted.
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*V. PERTURBED SINE-GORDON EQUATION

The more careful derivation of Josephson's equations makes us realize that
the current density that flows through the separating insulator of the junction has not
only the contribution of the supercurrent Josini only. A more complete expression for
the density of current in a LJJ is given by the type [18,22]:

which contains the contribution of the current due to the normal electrons (last terms)
and that the Cooper pairs interference current. Ro(V) and RI(V) are the resistances
for these two currents respectively. The second term in (5.1) is usually for simplicity
omitted. Also for simplicity, we may assume that J0 and Ro are not functions of the
voltage V.

5.1 More realistic equation for a LJJ

Combining relation (5.1) with Maxwell's equations we obtain a more realistic
equation for the LJJ, which has the form [22]:

(5.2)

2e to eRt el-

where R, is the resistance per unit length due to the surface currents which are
created in the London penetration layers around the insulator and the other constants
are defined in the same way as in relations (4.21) and (5.1). Inserting the quantities
(4.23) and (4.24) in (5.2) we have:

sin O * po - oL~ I4 -eR,-A0-- (5.3)
&2 C0 &2 XJ2 +o Rt

Thus, measuring length in Xj units (Josephson penetration depth) and time in nj.1
units (inverse Josephson plasma frequency) and inserting the constants:
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U. - V -. (5.4)
75OA R,~5

we obtain the following perturbed sine-Gordon equation (P-SG):

4ZX - 427 - Sn* -- a (l+CW*) *T - P#r - Y (5.5)

where y =I/lN I being an external current which we apply in order to balance the
losses and To the maximum Josephson current. We usually assume that v=0.

F'1. .1: a) 74cal geoetiy for a UJ. b) Josephson tnmsmiuion line," jfbdr=I s the exenal curnmt (bias
current). The typical Yw of the paramdets are [28J."
t0 (1 m) < < AL (5rxO8M) < < h (2rWOT7m) < < W (Sx1O(m) < < I (2r]O4) < < L (itT3m).

The dimensionless equation (5.5) describes the dynamical behavior of the phase
difference 4p(xt) in a realistic UIJ (see figure 5.1a). The last two terms of equation
(5.5) insert into the LJJs equivalent circuit two resistances parallel to the shunt
capacitance and the series inductance respectively (see figure 5.1b).

5.2 Perturbation theory for the P-SG

If we consider that the conductivity of the quasiparticles that penetrate the
insulator is constant (we usually consider that V=O in equation (5.5) and we adjust
the value of a) and we assume that a bias current is applied to the junction (y = con-
st.), having no influence of an external magnetic field, then the P.SG equation:

*rr - 4.n + Sk# g - 44 + P40w 7  (5.6)

describes very satisfactorily the dynamic behavior of the phase difference qi(X,T) on
the LUJ.

When a=0= y =0, then equation (5.6) takes the form of SG equation, which
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we extensively discussed in chapter HI. Now, very naturally, one wonders how for all
these solutions of SG equation and especially the soliton solution exist and how much
relation they have with the much more realistic P-SO equation? The first to face this
question were McLaughlin and Scoot [2], proposing two different approaches of
equation (5.6) where it's right hand side is considered as a simple perturbation of the
SG equation.

Considering that a, P and y are different from zero then all the other
solutions of the SG equation become asymptotically unstable and the LJJ which is
initially excited by them tends to return to it's ground state. This, though, does not
happen for fluxons and antifluxons which become the main carriers of the dynamics of
the P-SG equation. The two last terms on the right-hand side of equation (5.6) which
express the losses of the system, without being able to destroy the fluxons, tend to
"rum" their kinetic energy and trap them at some point of the junction. The external
bias term (bias current) on the contrary, tends to accelerate fluxons and antifluxons in
opposite directions. Finally, if that is possible, one expects that a balance will occur
and the fluxons/antifluxons will move towards the direction which the field imposes
which a certain velocity which is defined by the losses of the system.

If qp(X,T) is a solution of equation (5.6) then we can show that it holds:

dr (5.7)l dt

where Hso(9) = 8y with y = (1-v2)"•, is the energy of the SG equation fluxon/antifl-
uxon, thus:

_d -31 (sL)

8V (I-uD)- (5-8)

The velocity v of the soliton is no longer a constant parameter, but at least
for an initial transient period it has a dependence on time which is defined by the
perturbation terms.

Consider a, p and y small we can assume that besides the modulation of the
velocity the perturbation terms have no other influence on the soliton's form. Thus
putting the SO solution in equation (5.8) we obtain the relation:

dy 1 1-V 4 (, U2- 1 (5,9)di - -T(-,) -. 2
dt 4 3

If the length of the uIJ is considered infinite (very large) then asymptotically
we expect that we will have a balance between the competitive perturbation terms of
equation (5.6), hence finally we will have du/dt=0. Thus, from (5.9) we can easily
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calculate the asymptotic value u. of the velocity of the fluxon/antifluxon which will be
given by the relation:

SY x(l-v•) [ + •3(1-o, (5.10)

For 0=0 we can easily obtain the equation:

u. = [ l+(4U/xy)9 ]- (5.11)

The above calculation is not exact and it is not easy to be done for more than
one fluxon/antifluxon. Beyond the modulation of the velocity the perturbation of (5.6)
equation will cause other changes of the SG equation solutions. For instance, we
expect a small change in the energy of fluxons/antifluxons which will be the cause of
radiation of small oscillations. The reader who wants to use more complete methods
for the study of equation (5.6) should study references [2,7,22].

5.3 I-V characteristic

In order to create a transition to the next section, which is experimental, we
will discuss here the role of I-V characteristics. The experimental identity of a
Josephson junction is its I-V characteristic (that is the current-voltage curve). Such a
typical I-V characteristic is that of figure 52.. As soon as we apply a small bias current
to the junction the vertical branch of zero voltage appears (dc Josephson effect).
Continuing to increase the current and right after we exceed the maximum value of
Josephson current L0, we observe a steep shift of the curve (see dotted lines) to finite
voltage values which are located in the McCumber branch (quasiparticle branch). This
branch initially presents a steep ascent of the current and ends in an ohmic behavior.

' * I I

-50-

. i I I * I
-2 0 2

V (rnmV)

Fig. 5.2: 7u*ia I-V chamctemac of a Josephson juncion 127). The amw show the shift from the zoo
voltage curent to the McOunber branch.
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In 1964 M.D. Fiske, applying an external magnetic field observed the appear-
ance of current peaks on the low current part of the McCumber branch (far enough
from the ohmic behavior) [291. These singularities are called "Fiske steps".

If we now consider a IJJ, then even in the absence of a magnetic field we
observe the formation of similar current peaks (see fig. 5.3) which for this reason are
called Zero Field Steps or simply ZFS. In figure 53a we represent the first three ZFS
which are located in distance between them while the first ZFS is located approxi-
mately at the position 34 ,V. The height of each ZFS is approximately ImA. If an
external magnetic field is applied to the junction, Fiske steps (ZFS) appear in the I-V
characteristic (fig. 5.3b). In order to place a ULJ working at a certain ZFS, one starts
from the McCumber branch and diminish the bias current until the value that lies
right under the foot of the ZFS. Next, increasing again the current little by little the
voltage stays and ULJ enters into the corresponding ZFS state.

The first to detect the existence of ZFS were Chen, Finnegan and Langenberg [301.
Fulton and Dynes [31] related for the first time the ZFS with the propagation of
fluxons in the IJJ. The fluxon's propagation is related to the propagation of a voltage
pulse (V- < st>) which can be experimentally detected at the ends of the junction.

ZFS. ZFS2 ZFS3 ZFS ZFS2

FS2 FS4

F S FS3

voltage * (41 voltage . (0

(o) (b)

Fig. 5.3: a)I-V chanraeri of a L. wi*h three ZFS's. b) I-V charactedc in the presence of teinal

mareti fiel

50.

50"

Fig 5.4: Nwumical simulation for the propagation of a flumn (kink) on a LIJ which works at the Ist ZFS
conditions. The panumetnes have the following values.: a&=0.05. 8=aZ0Z y=0.5 and L=8 and we have
consdeed fre bounday conit [221.
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Let us assume that a single fluxon propagates in the junction. After exactly one period
T0=2L/u (where L is the junction length and v the soliton velocity) the fluxon returns
back to the position from where it started. At the ends of the junction we have
considered free boundary conditions, that is q4,=O, where the soliton (kink) is reflected
and changes polarity (see fig. 5.4). Thus, in a complete period, the phase has changed
by 4w. If we have N kinks on the junction the phase changes by 4Nw.

In general, we have the relation:

l zi 1 2e ( .21 T.., dt - I [(To) - O)] . v1 (-.12)

from where we find

&= 4N i0 ftt (5.13)To 2e, L

which tell us that for a certain bias current I., the dc voltage depends on the number
of flux quanta (fluxons), the length of the junction and the velocity of fluxons. The
velocity u is no longer a free parameter, as it was for the SG equation, but it is
defined through the balance between the influence of the external field (bias current)
and the losses.

ist

If we set the IJJ working at the 1st ZFS we have the picture of figure 5.5. In
this case there is only a single fluxon on the junction, which is assumed to move
initially to the left, be reflected at the free ends and change polarity. At the main
figure we present the sp. quantity, which as it is known is related to the current. The
mean value in a 2L period of op. is zero. Thus the total current i which flows in the
insulator towards a direction is zero. In contrast, qT which is related to the voltage
and is represented at the insert part of figure 5.5, is not zero over the period which
corresponds at a 2L length path of the pulse. In the insert figure we observe that the
pulse does not change sign after the reflections at the ends. This is due to the fact that
qtr=-U, where the velocity u also changes sign after each reflection at the boundaries.

2nd ZFS

If we set the lJJ working at the 2nd ZFS then we have the picture of figure
5.6. In this case in the LJJ two fluxons exist which can be propagated either to the
same direction (Fig. 5.6a) or to different directions (fig. 5.6b).

The mean value for the voltage <V> is almost the same for both the
dynamic states of the 2nd ZFS and corresponds to a value of voltage approximately
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Fig SS Mm caal simulatfon of equation (5.5) with a=0a.0S P=0.0.Z Y=0.3Sand L=6 A peiod of
spatia propagation coffspondi to apprawmate 10 ime unit, (321.

Ix

;$ b

Fig. 5.6. Nwnial simulation of quation (5-5) for the 4djnk stae of the 2nd ZFS. a) The two fluons
prp t tow* the same dkecdon a =O.O p=0.02, y=g3 3ad L =6 b) The fuxon wl and ta.7uwm

opm•wpe two s opposite dAvdions a=O.EO0, p-=0.Oz y=a .12SandL=6
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double the value of the 1st ZFS. In contrast, the maximum current is slightly smaller
than that of the 1st ZFS and this is due to the fact that the dynamic state of two
fluxons is less stable than the state of one fluxon. In figure 5.7 we symbolically
represent the fluxon's path for the several dynamic states of 1st and 2nd ZFS.
We can also obtain such pictures for the next ZFS's, where their representation is
more complicated [321.

X
F 2' bunch Symmetric

K>J ~ Kj4 Fig. 17- Paths of flurons while they
propagwe on the UJ 127).

ZFS1 ZFS2 ZFS2

1a1 1b)

-'75 -

50

S25- Fig. 5.& I-V characteristic for a LJJ.
77Te circles indicate expermental
results white the continuous lines
numerical results [281.

0.0 2.5 5.0 7.5 10.0

IdC(mA)

The comparison between numerical results which are obtained from equation
(5.5) and experimental results is very satisfactory. In figure 5.8 we show such a
comparison.

5.4 Estimate of emitted power

Since for most of the applications the soliton microwave oscillator is biased on
one of the ZFS's it is of interest here to make a very rough estimate of the potential
available power. Let us for simplicity assume a 100 GHz soliton oscillator in Niobium
technology. The length L would be about 50 Mm and the voltage of the first ZFS
about 200 MV. With reasonable values of the tunneling current density the junction
could carry 200 mA with bias on the first ZFS. The power delivered from the bias
circuit to the junction is then 4 MW. A good fraction of that power (for example 1
MuW) exists as intrinsic power in the junction at the fundamental frequency. With a
good coupling circuit about 10% (0.1 MW) could be coupled to an external circuit.
This power can be enhanced considerably by biasing on higher order ZFS's or by
phase locking several long Josephson junctions. Incidentally we note from our simple
estimate that for the soliton oscillator the power increases with frequency since the
voltage of the ZUS increases. This is an unusual property of any high frequency
oscillator.
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On the other hand it may be difficult to obtain a 10% coupling efficiency
specially at the higher frequencies. Very elaborate microwave designs are necessary
o bridge the gap from the transmission line to the 100 Ohm level of traditional
nicrowave components and antennas. In the next section we will discuss various
lesigns and the results that have actually been obtained experimentally.

IV. EXPERIMENTAL RESULTS

6.1 Single Soliton oscillators

A soliton bouncing back and forth in a long junction is perhaps the simplest
way of realizing a local oscillator. A schematic drawing is shown in figure 6.1. When
the soliton is reflected at the right end of the junction a fraction of the power is
coupled to the microstrip. Since this crude coupling scheme only gives a very weak
coupling, it is possible to study the bare fluxon motion by coupling the microstrip to a
conventional microwave receiver. This was done for example in [33], where it was
realized, that multisoliton propagation could take place. Such multisoliton motion may
keep the fundamental oscillator frequency unchanged but enhances the power emitted,
since more solitons are involved. The crude coupling shown in figure 6.1 does not
provide enough power to be useful as a local oscillator however. A typical number at
10 GHz is 10"11 - 10-13 Watt. To provide more power more elaborate coupling schemes
such as cavity coupling, slot lines, etc. must be used.

B

A

FiA. 6.1. Schematic drawing of a soliton oscillator. Films A and B eve* and are separated by a thin

kudator laye. C s the mbmspln.

The simple setup shown in figure 6.1 also made it possible to obtain a
measurement of the linewidth of the radiation [34]. Again at 10 GHz this turned out
to be of order of a few kHz, which is a very satisfactory number. Of course at 10 GHz
many other techniques can be used to produce narrow linewidth oscillators, however,
the single junction soliton oscillator can easily be scaled to 100 GHz, or even 500
GHz, without special technological problems. The available power scales at least
proportional to the frequency (possible to the square of the frequency) to make it
even more useful at higher frequencies. At 35 GHz output powers of order tens of
nanowatts was measured in a single junction soliton generator [35].
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A more elaborate coupling scheme may include the use of a resonant circuit
between the long junction and the microstrip in figure 6.1. Recently numerical
simulations have been performed [36] with the purpose of studying the interaction
mechanism between a long junction and a cavity. These simulations demonstrated that
it was possible to have a soliton phase lock to the cavity at its resonance frequency. In
that process power was delivered to the cavity thereby charging it.

With the cavity further coupled to a microstrip circuit the power could be
coupled out. A typical problem in connection with coupling the power out is that the
long Josephson junction often has an impedance level below 1 n while the microstrip
circuit has an impedance level of order 50 n. Thus either cavity coupling or microstrip
impedance transformers or a combination must be used. Figure 62. shows a clever
design used by the group in Salerno, Italy (37]. It incorporates a resonant structure
one half wavelength long and a microslot line. This circuit will be dealt with in more
detail below.

'- J /U7U

Fig. 6.2 Sample and s0ipline geome-
"toy for the 20 junction awray used in
1371.

For bome local oscillator applications (for example some parametric amplifi-
ers) the impedance level of the receiving end is also low. Thus both the local oscilla-
tor and the parametric amplifier or mixer may be on the same chip and 50 n circuits
at microwave frequencies can be avoided altogether. The coupling loss from the long
Josephson junction can be reduced considerably. In such an experiment with both the
soliton generator and the detector on the same chip Cirillo et al [38] measured about
0.1 pW generated at about "5 GHz.

It should be kept in mind however, that for many applications, including
astronomy, the impedance level of incoming signals (antenna) is hundreds of ohms so
that somewhere the inconvenient impedance transformation must be made.

A quite different single junction single fluxon oscillator was described by
Sakai et al 1391. In this remarkable experiment a circular long Josephson junction with
a load resistor in one end and a feedback resistor between the two ends was used, and
the oscillation waveform at 24 GHz was measured by using a superconducting
(Josephson junction) sampling circuit.

6.2 Coupled (phase-locked) sollton oscillators

If two soliton oscillators can be synchronized to phase-lock the output voltage
would double and hence the power increase a factor of 4. With N junctions locked the
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output power would increase as N squared. In a remarkable experiment by the
Salerno group [37,401 they used 20 long junctions and obtained as much as 0.35 ;AW at
x-band in a 50 n line. This is more than adequate for driving an SIS mixer or a
Josephson junction parametric amplifier. Linewidths down to about 5 kHz were
measured. The coupling scheme they used is the one shown in figure 6.2.

The success of the above experiment is remarkable, however the details of the
phase-locking is not understood. For example, do the junctions couple along their long
parallel sides or can interaction only take place at the ends, where solitons are
reflected and electromagnetic generation created? Presently experimental work with a
simple system consisting of only two junctions is being pursued to clarify this question
[411.

Numerically the interaction of two long junctions end-coupled to each other
through a common cavity has been studied in [36]. An example of such phase-locking
is shown in figure 6.3, which displays quite clearly the synchronization (with a small
phaseshift) of the solitons in the two junctions, even though the damping parameters
were chosen 109o different in the two junctions. The interaction mechanisms between
the two junctions and the cavity is quite complicated: in parts of the period current is
transferred from a junction to the cavity, and in other parts the current direction is
reversed [36]. Coupling circuits other than a cavity have been studies in [42] (induc-
tance, including experiments), [43] (capacitance) and [44] resistance. In an approxima-
tive manner, described in [45], a system consisting of 8 long junctions coupled to the
same cavity was investigated [46].

VOLTAGE

-. t

f6g. 1-k Synchronizagion of two solitons through a caWvy in the middle of the line.

It should be noticed that the Salerno group also tried a 100 junction sample.
In this case however only very few junctions coupled, and only little output power was
measured. Because of the success with the basic 20 junction circuit we expect more
work in this direction in the future.
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A device that is somewhat similar to the single long Josephson soliton
oscillator is the so called flux flow oscillator developed and described in a series of
important papers by the Japanese group at Kyushu University [47,48,49,501. In the flux
flow oscillator a magnetic field is applied to the long Josephson junction, and the
almost symmetric configuration considered in sections 6.1 and 6.2 is broken. Fluxons
are created in one end of the junction and annihilated in the other end, i.e. trans-
ferred to an external circuit. With a sufficiently large magnetic field the pulse charac-
ter of the individual fluxons is changed to an overlapping train of fluxons propagation
in one direction. The results that have been obtained are impressive [48,49,50]. In a
low impedance receiver on chip was measured about 1 pW tunable between 100 GHz
and 500 GHz by means of the magnetic field. No direct experimental measurement of
the linewidth has been obtained, in [49] an estimation based on the dynamic resis-
tance of the zero field step predicts the possibility of a linewidth of a few kHz.

In summary the flux flow oscillator seems to be very well developed by the
Japanese group and should be mature for applications. Work has been taken up by
other groups such as described in [51].

6.4 Snall single Josephson oscillators

The main reason for using the long Josephson junction oscillators instead of
small junction ones is firstly the narrower linewidth, but also the larger potential
power. Nevertheless it is worth briefly considering the situation if small Josephson
junctions are used. In the next section dealing with coupled (phase-locked) small see

that such samples are certainly competitive for use as microwave generators.

A single junction generator is discussed in [52]. The high current density
oscillator junction produces 0.5 pW of radiation and about 10 nW is coupled to an on
chip detector. The frequency is from 300 GHz to well above 1 THz. There are no
results for the linewidth, but it is expected to be large compared with the numbers
cited in the previous sections.

6.5 Phase-locked arrays of small junctions

By phase-locking an array of small junction [53,54] it is possible to increase
the emitted power by a factor N squared and decreasing the linewidth by 1/N where
N is the number of phase-locked junctions ([53] is good for references on the subject
of arrays of junctions).

Typically the junctions must be very small and have large current density, and
the coupling circuitry tends to be complicated; fabrication involves E-beam lithogra-
pby. However, recent results [55] are very promising. A 40 junction array delivered up
to 1 uW of power into a 60 n on chip detector at frequencies about 350-380 GHz, and
the potential for higher power and higher frequencies exists. No measurement of the
linewidth were reported [55] however earlier work at lower frequencies has confirmed
the 1/N dependence of the linewidth {53]. Even so we expect the linewidth to be
larger than the kHz results reported for long Josephson junctions.
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The ultimate aim is to build an on chip receiver with local oscillator, mixer/-
amplifier, if circuit, filters and antenna on the same chip. Work in this direction is
taking place in several countries, but no finished system has been reported yet.

VIL CONCLUSIONS AND DISCUSSION

The properties of the sine-Gordon equation for fluxon motion on the Joseph-
son transmission line were discussed. The dynamics was visualized by a comparison to
a mechanical system with simple properties, the chain of coupled pendula. From all
the SG equation solutions, these who conserve their physical importance in a realistic
system as that of one lJJ are the fluxon/antifluxon solutions. The LUJ is a typical
nonlinear system, where one can study experimentally all the known phenomena of
Nonlinear Physics, starting from solitons and ending in chaos [56-581. Many aspects of
this Physics are not discussed here, especially those who are related with recent
theoretical and experimental results involving new interesting applications.

One ultimate aim of this research is to utilize the fluxon motion in Josephson
transmission line for the purpose of constructing an oscillator at millimeter and
submillimeter frequencies. The state of the art for such oscillators was discussed by
reviewing the experimental results obtained so far. It is concluded that in order to
have a margin in power for the use as local oscillators in superconducting receivers,
phase locking of several long Josephson junctions may offer an advantage.

The role of the recently discovered high transition temperature superconduc-
tors may be very important int the future. This is because the frequency range may
potentially extended by factor of 10 to the 10 THz range, and further cooling prob-
lems may be simplified considerably. However, the fundamental component "the thin
film superconductor-insulator-superconductor Josephson junction" has not yet been
made for those very complicated ceramic materials. If such junctions become available
there are reasons to believe that the formulas derived here will still be applicable,
although of course the materials parameters are changed.
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Abstract

We studied the static "soliton" solutions of a two dimensional window Josephson
junction. The junction is surrounded by a region with no tunneling with inductive
properties similar or different from the window. We have varied the aspect ratios of
the junction and its environment with respect to the Josephson characteristic length
Ai. In all cases the fluxon width is much larger than A,. It depends in a complicated
way on the geometry when Aj is smaller than the width of the junction. On the
contrary for long and narrow junctions it increases like A!. This strong increase of
the fluxon width leads to its destruction due to the finiteness of the junction.

A simplified but rather successful modeling of the fluxon dynamics in a one di-
mensional Josephson junction is the sine-Gordon equation [1,2,3] describing the phase
difference of the Cooper pair condensate in the superconducting films. However in a
particular device called a window junction one should expect important two dimen-
sional effects to appear [4]. Such a junction consists of an active window surrounded
by an "idle" region with no tunneling. This will modify the properties of the junc-
tion. This geometry allows for better quality junctions [4,5], in particular the edges
are better defined and don't deteriorate with time as shown by the LTSEM technique
[6]. In this paper we consider the static fluxon solution in a window junction with zero
bias current and magnetic field. The I-V characteristics of a junction depend also on
static properties i.e. the static field configuration. In the one dimensional case this is
adequately given by the sine-Gordon static kink of width Ai. For the general window
junction the phase O(x,y) will not be describable with a few parameters. There are
however geometries in which this is possible. It should also be mentioned that these
fluxons are marginally stable when the junction is infinite. The numerical algorithms
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q/

used (7,81 preserve the initial antisymmetric character of the solution. Besides small
external fields can stabilise these solutions which are a good description of a low
velocity kink away from the boundaries.

The method of solution presented here is a downhill minimisation of the total
energy starting from a pure sine-Gordon kink solution E consists of a magnetic like
energy due to the surface currents E, and the Josephson part Ep:

2-•(Oi - OJ)' + ~i (I - cos(OO)) (1)
d

where Lij is the inductance between sites i and j and the summation is on nearest
neighbors only. We have used a two dimensional distributed Josephson circuit model
with grid size a. The dimensions of the window are I x w, those of the idle region
L x W. The parameter Iji is the critical current inside the window and zero outside.
Here Lij will be considered uniform. This discrete model can be shown to be com-
pletely equivalent to Maxwell's equations and the Josephson consitutive equation. In
this model the normal derivative is zero on the outside boundary and the normal
component of the surface current is continuous across the junction boundary.

In an infinite one dimensional junction with no idle region the non-dimensional
phase is given by:

O(x) = 4tan 1 (e (2)

with a - Aj the fluxon width. The dimensionless Josephson and magnetic energies
are:

Ej (3.a)
4a

E, =4- (3.b)

Minimising the total energy with respect to a gives as expected a = A, and Ej = E.
The same result holds true if the junction is two dimensional with no idle region except
that the expressions in (3) are multiplied by w. In a more general two dimensional
geometry the phase lines outside the junction will be spread out since this minimizes
the gradient of 0, the Josephson energy will be minimum for 0 = 0 or 27 and this
will tend to reduce the width of the kink. The competition of these two effects leads
to phase lines that are strongly curved as they leave the junction.

For a large idle region one can distinguish two regions depending if the ratio
,, is smaller or greater than 1. In the former case there is a significant transverse
structure of the phase in the junction. The phase cannot except for some specific
geometries be described by a few parameters. The width of the kink increases faster
than linearly with Aj. When the ratio A becomes greater than 1 the phase lines in the
junction become straight. This geometry in the case where Ai is much smaller than
the length of the junction I is amenable to a simple modeling. The magnetic energy
in the idle region can be computed by using the analogy of two conductors of finite
length I and infnitely small width placed on a line such that they are at a distance
2a of each other. The two conductors are at potentials 0 and 2w respectively. The
field can be obtained by conformally mapping the upper half-plane to a rectangular
domain where the field is constant [9]. The energy is then given in terms of elliptic
integrals and reduces when I becomes small to:
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E.. =4z In(-) (4)
2a

which is the energy contained within a circle of diameter 1. The convergence of the
energy to (4) is fast so that it holds within 10 % even when • is about .2.
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Figure 1: The magnetic energy vs. log(a) for a long narrow junction in a wide
environment.( 1=351, w= 3, L=601, W=353)
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Figure 2: a as a function of MI for the long narrow junction of figure 1.

Because the phase lines are approximately staight in the junction the Josephson
energy can be approximated by (3.a) in which the right hand side is multiplied by w.
Minimising the total energy with a we obtain

o =iA (5)

Wi

i.e. the soliton width varies quadratically with Ai in this particular geometry. Figure
1 shows the magnetic energy vs. Ina obtained by varying Aj. It can be seen that for a
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wide range of values of A, the curve is linear with a slope close to 47r. The departure
from linearity at large Aj is due to the soliton being affected by the boundary while for
small Aj the shape of the phase in the junction is crucial to define the magnetic energy
[7]. Figure 2 shows a vs. A. and the region where the curve is linear is consistent with
the linear portion in figure 1. The slope is very close to 1. The agreement with (4)
is very good and is due to the fact that when Aj becomes larger than w the magnetic
energy in the junction becomes much smaller than the one in the idle region. In figure
3 we plot the contour lines of the phase field in the junction. Some lines are closed
indicating for example that the region where q = 0 is surrounded by a region where
0 > 0. It is then possible that an increase of Aj leading to an increase of the width of
the soliton can cause its annihilation.

In the study presented above the size of the idle region was large so that there
could be no influence from the boundaries. In realistic situations the idle region is not
so large. It is therefore expected to change significantly the magnetic energy because
the contributions from the electrical images of the junction will be significant. This
effect is currently being investigated together with the dynamic behavior of these
fluxons.

ti

Figure 3: Contour lines of the phase for the junction of figure 1 with Ai = 4.
The computed phase field has been scaled down for representation.
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INTRODUCTION

The purpose of this paper is to report some of the results obtained From
the numerical simulation of the dynamical behaviour of a parallel biased array
o•f small Josephson junctions. The interest for this topic was stimulated by the
partecipation of the authors to a research program concerning the flux flow in
grain boundary junction arrays, that is going to be started with the support of
the EEC. Moreover, since the model equations are essentially the same as the
ones obtained to integrate numerically the Perturbed Sine Gordon Equation,
which models the dynamics in long Josephson junctions,1 there was some inter-
est to explore the effects originated by an extreme spatial discretization. The
emphasis has been put on the calculation of I-V characteristics and their inter-
pretation. in order to compare the results of the simulations with the experi-
mental work in progress in our laboratory.

THE MODEL

Let us consider an array of N parallel biased Josephson junctions (JJ) (Fig.i)
consisting on N-I superconductive loops of equal area, each incorporating two
JJ's. In what follows we will assume that the bias current is uniformly distri-

La
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Plgum L Geornmtry of the parallel biased Josephson junctions array.
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buted and that no external magnetic field is applied. With these hypotheses,
imposing the fluxoid to be quantized in each loop, we obtain from the RSJ
model' the following differential equation for the time evolution of the quan-
tum phase difference 4I across the i-th JJ:

101 +÷c~l+sinfOlp 1)-0-'( 91-12q~i+ 9i+1)-0 (1 Q< 0). (1)

Here y=[B/ 1 , is the bias current normalized to the junction critical current, the
time is normalized with respect to the inverse of the plasma frequency
wj=(2elo/kC)-V2. a=(wjRC)-1 is the damping parameter depending on the quasi-
particle resistance R and the junction capacitance C and 0=2xLlo/4D0, where L is
the loop inductance and 0, is the magnetic flux quantum. For the first and the
last junctions one must take into account that they are not comprised between
two contiguous loops. Therefore, their equations take the form:

&5 1÷ xi÷sin(y,)-0-'((Pz- -P,)-Y=O (2)
and

45N + wONl +sin ( qpN)-• qWl_1 )-y=O. (3)

We observe that, as in the case of a long JJ, the array has a mechanical analog,
i.e., a chain of elastically coupled pendula with negligible losses in the springs,
but the intrinsic discretization makes more strict the analogy.

THE NUMEICAL RESULTS

The numerical calculations that we report in this paper are based on the
following set of parameters: N=10. =0.2S, 03=. These parameters are suggested
by the opportunity to obtain a realistic simulation of a device made of 10 Nb-
AlOx-Nb junctions that will be tested in our laboratory. The system of Eqs.
1,2.3 has been integrated using the Bulirsch-Stoer algorithm2 t'ith the error pa-
rameter s' 10-'. To obtain the I-V characteristics the current y was incremented
in steps of 10-3; after each increment the system was allowed to run 100 inte-
gration steps for the sake of stabilization, then the average voltage was calcu-
lated using the successive 200 steps.

In Fig. 2 we show the I-V characteristic of the array calculated assuming as
initial conditions cpI=O, cbt=0 (0=1...N). As expected, it is identical to the I-V cha-
racteristic of a single JJ, because static and uniform initial conditions make
ineffectual the coupling term In Eqs. 1-3. The dynamics becomes mich more
interesting if we choose as Initial conditions a magnetic flux quantum (or flu-
xon) trapped in the array, i.e. 9,...,=O, % ... 10=2c, 01=0. In this case, if we start
the integration from "YO, the static fluxon turns out to be unstable: we found
that the phases realigne themselves to a common value (I. e., the fluxon is de-
stroyed) within few integration steps, and the I-V characteristic reduces to the
one in Fig.2. The value of T at which the static fluxon disappears is a monoto-
nically growing function of 0; when 0 is increased to about 4, the static fluxon

0.4

030°

.i U.."

0.5 m ,o ,', 0,ii, ,+ o o., c., o+, o., al) ,

igure 2. I-V characteristic with uni- Fgure 3. I-V characteristic with one
form initial conditions, static fluxon as initial conditions.
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stays in the array until y becomes so large that it starts moving. To generate a
steady state with one (or more) stable oscillating fluxon when 0<4 one must
provide from the very beginning a finite amount of energy exceeding some
treshold that also depends on a. For z=0.25 and one fluxon in the array the
treshold current is y.=0 .302. The calculated characteristic is then shown in
Fig.3, where the first vertical branch at nonzero voltage identifies the stable
oscillations of a single fluxon. Since the phenomenon retains the same physical
meaning as fluxon oscillations in a long JJ, we will refer to this (and to higher
voltage branches) as to Zero Field Step1 (ZFS). The time evolution of the array
when biased on the ZFSI is plotted in Fig.4 that clearly shows the succession

* of reflections of a fluxon into an antifluxon (and viceversa). In Fig.3 we note
that exceeding y=0.884 there is a large voltage jump from the ZFSI; this hap-
pens because six more fluxons are suddenly generated. Increasing further y, the
system stays on the ZFS7 until it collapses to the state of uniform rotation of
q Decrementing y from the ZFS7, the fluxons are progressively lost and there-
fore the characteristic goes through the lower order ZFS's. From Fig.3 one can
deduce the treshold current for each ZFS and calculate the full I-V characteris-
tic (Fig.S) adding successively one static fluxon to the initial conditions for
each ZFS to be calculated. The same characteristic was obtained, alternatively,
repeating the procedure described above to illustrate the I-V characteristic re-
ported in Fig.3, but increasing again y whenever, descending the I-V character-
istic, the number of fluxons was reduced to the desired value. We remark that,
no nw:,itter where the fluxons were localized in the array by the initial condi-
tionz, the steady state turned out to be the same.

Insofar the dynamics reminds closely the case of a long JJ (but for the
large current treshold to start the fluxon motion). But an effect of the strong
discretization can be seen on the ZFS2 and the ZFS3 in Fig.5 and, more clearly,

i.4
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0.0 0.06 010 0.15 00 Ci 036

FIgure 6. Enlarged view of the ZFS2.
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in Fig.6, which provides an enlarged view of the ZFS2. The evident structure of
the step, that is obtained both incrementing and decrementing y, can be possib-
ly explained analyzing the plots in Fig.7, which shows the time evolution of the
voltage across the junctions for values of y corresponding to the first and the
second transition in the structure. It can be seen that in the first case the peak
voltage of the fluxon-antifluxon collision, initially localized either on the fourth
or on the seventh junction (y=O.63), moves to the fifth and the sixth (y=O.638);
the behaviour is reversed in the second transition (y=0.714 and y=0.7 3 ). In the
middle (y=O.634 and y=0.7 22), the peak is evenly spread between two 3J's
(fourth-fifth and sixth-seventh) and, since it never grows as large as the vol-
tage produced by a collision localized on a junction, less energy is comparative-
ly dissipated, so that a small current increment causes a relatively larger veloc-
ity (i.e., voltage) increment.

CONCLUSION

These simulations show that the parallel biased Josephson junction array
shares many features with the long Josephson junction, as was expected on the
ground of both physical and mathematical considerations. However, it departs to
some extent from the well known dynamics of the long junction due to the
discretization and to the effect of the large loop inductance. We intend to
investigate furthet this subject and to extend the simulation to the effect on
the array of an rf signal.

REFERENCES

1. A. Barone and G. Patern6, "Physics and Applications of the Josephson Effect"
Wiley, New York (1967).

2. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Wetterling, "Numerical
Recipes", Cambridge University Press (1986).

342



I

LINEWIDTH OF JOSEPHSON OSCILLATIONS

IN YBaaCu3 OT_• STEP EDGE GRAIN BOUNDARY JUNCTIONS

Yu. Ya. Divin', 3'4, A. V. Andreev"'4 , A. I. Braginski2 ,
G. M. Fischer1',, K. Herrmann2 , J. Mygind1 , N. F. Pedersen'
and M. Siegel 2

'Physics Laboratory I, B 309, Technical University of Denmark
DK-2800 Lyngby, Denmark2Institut ffir Schicht- und lonentechnik, Forschungszentrum Jilich

D-W5170 Jfilich, Germany
3Institut ffir Festk6rperforschung, Forschungszentrum Jillich

* : D-W5170 Jiilich, Germany
'Institute of Radioengineering and Electronics of the Russian
Academy of Sciences, Moscow 103907, Russia
SLehrstuhl Experimentalphysik II, University of Tfibingen
D-W7400 Tfibingen, Germany

INTRODUCTION

Recently many different types of high-Ta superconducting weak links have been
studied and some of them have shown Josephson behaviour1 . One of the promising
types is the step edge grain boundary junction (SEJ)2 . These junctions are fabricated
by epitaxial growth of a high-T. thin film onto a steep step etched into the substrate. As
follows from High Resolution Electron Microscopy (HREM) studies' the SEJ actually
is a series connection of at least two grain boundary junctions formed at the upper and
the lower edges of the step. We have studied the ac Josephson effect in YBa2Cu 3O7-,
step edge grain-boundary junctions in the temperature range from 4 K to 90 K. The

* temperature dependence of the linewidth of millimeter-wave Josephson oscillations was
measured and it was shown that the effective noise temperatures of a SEJ may be

* as low as the physical temperature in the temperature range investigated. An excess
1/f-type fluctuation contribution to the observed linewidth may be explained by an
inhomogeneous spatial distribution of the current. The SEJ studied may be considered
as multi-junction multi-loop interferometers, in which excess noise can be attributed to
spontaneous transitions between different states.

Faaure Directions of Nonlinear Dynamics in Physical and Biological Systems
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EXPERIMENTAL TECHNIQUES

A step of - 120nm height and - 800 angle had been etched on a LaAIO 3 substrate
by Ar+ ion milling. Then a YBa2CuaO3-. thin film was deposited by pulsed laser
ablation4. The width of the junction was defined by patterning 2 to 32 pm wide bridges
across the step using photolithography and Ar+ ion beam etching. The sample holder
was placed inside a sealed vacuum can immersed directly in a liquid helium bath. The
temperature of the copper sample holder was measured by two calibrated thermometers
in connection with a temperature controller. A coil wound around the vacuum can could
supply a dc magnetic field perpendicular to the substrate. All data were measured for
magnetic fields maximizing the critical current of the SEJ. The cryostat was electrically
shielded and surrounded by a double p-metal shield. All measurement were made in
an rf shielded room.

The indirect measurement technique of the Josephson linewidth is the same as used
in the study of the linewidth of low-T, microcontacts8 . This technique is based on the
analytical properties of the voltage dependent response, AV(V), which is the difference
between the unperturbed IV-curve and the curve obtained with applied electromagnetic
radiation. The response AV(V) shows an odd-symmetric resonance at the voltages
V = ±(h/2e)f. The voltage difference, 6V, between the maximum value V+ and the
minimum value V- of the response AV(V) in this region gives us the linewidth 6f
according to the relation Sf = (2e/h) 6V.

21
1.2

S.0.8

C 0.4

S0.0 Figure 1: The IV-curve
W ,(1) and the voltage re-

o4 sponse AV(V) (2) to
70.2 GHz irradiation for
a 32pm wide SEJ at

0-1.2 77.3 K.

.)-1.6
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Voltage (/zV)

RESULTS AND DISCUSSION

Figure 1 shows the 77.3 K IV-curve (curve 1) and the voltage response AV(V)
(curve 2) to mm-wave radiation with frequency f = 70.2GHz for a SEJ with the width
W = 32pm. Two odd-symmetric resonances at voltages V = ±(h/2e) f = ±145 pV
were observed on the AV(V) response, thus demonstrating the nonlinear interaction
of the weak mm-wave radiation with the Josephson-oscillations. The width, WV, of the
resonant structure was (2.5 A 0.4) pV and this value corresponds to the Josephson
linewidth bf = (2e/h)bV = (1.2 ± 0.2) GHz. The measured value of the linewidth
is close to the value 6f = 0.9 GHz estimated for this SEJ using the RSJ model with
Nyquist thermal fluctuations at 77.3 K . In a recent study6 of the Josephson oscillation
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linewidth in bicrystal grain boundary junctions it was shown that thermal fluctuations
could be dominant in the linewidth from liquid nitrogen to liquid helium temperatures,
but for the SEJ we find a different temperature behaviour.

At temperatures below 77.3 K the response AV(V) showed an unusual behaviour
with applied magnetic fields of the order of I0- T. Figure 2 shows an example of this
at 70.3 K. In order to maximize the resonance response for positive current bias (Figure
2a) and negative current bias (Figure 2b) different magnetic fields were applied. Not
only the IV-curve (curve 1) but also the response AV(V) (curve 2) became strongly
asymmetric. In some cases no coherent response was observed at negative bias, when the
response was maximized at a positive bias (Figure 2a). For some temperatures below 60
K switching and chaotic behaviour in the IV-curves and AV(V) curves were observed.
At lower temperatures the IV-curves showed a hysteresis which was dependent on the
maximum bias current used in the previous measurement. The linewidth also depended
on the applied magnetic field. For example a small decrease in the critical current by
the magnetic field could decrease the linewidth by a factor of two at 70 K.
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The temperature dependence of the linewidth of the 70 GHz radiation detected
from a 32 pm wide SEJ is shown in Figure 3 (filled squares). It is a general trend
that the linewidth does not increase proportional to temperature as it is expected in
the case where thermal fluctuations were dominating. Alternatively a 1/f-type critical
current fluctuation ' might be responsible for the excess contribution to the linewidth
at lower temperatures. From Figure 3 it is dear, that the variation of the critical
current (Triangles) and the linewidth is not directly proportional, but the data seem to
be better accounted for by 1/f-noise in the critical current.

A possible explanation could be that a spatially inhomogeneous current distribution
in the SEJ causes the pecularities in both the averaged dc characteristic and in the li-
newidth, which actually is determined by the integrated spectral density of the voltage
fluctuations of the junction. According to this approach the SEJ may be considered
as a multi-junction (with different Il) multi-loop (with different inductances Lk) inter-
ferometer, where the characteristic energies Et - d EJk = =may be larger
than kT at lower temperatures. This increases the complexity of the system studied
and introduces new available states with closely spaces energy levels between which
spontaneous transitions may take place, resulting in an increase of the non-thermal
noise of the SEJ.
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INTRODUCTION

Fluxon propagation in Long Josephson Junctions (LJJ) has been thoroughly in-
vestigated in past years both as a model system for soliton dynamics1 and in view of
possible practical applications2 . The electrodynamics of a LJJ is described by a per-
turbed version of the well known sine-Gordon Equation (PSGE), its kink solution corre-
sponding to a magnetic flux quantum propagating in the junction barrier. Recently has
attracted considerable interest solitons propagation in arrays of small coupled Joseph-
son junctions3 . In this paper we focus our attention on a system constituted of by a one
dimensional array of coupled Josephson Junctions, designed in such a way to generate
microwave radiation through a controlled fluxon dynamics.

MODEL

In Fig. la is shown a sketch of the device investigated, constituted by 3 basic
elements: 1) an array of coupled Josephson junctions, each appearing as a small micro-
bridge between the two superconducting electrodes; 2) a control line (on the left of the
device) generating a local magnetic field when a current IL is passing through it; 3) a
detector junction (on the right of the device) which is coupled to the array through a
resistor R..

The equivalent electrical model is shown in Fig. lb, where additional current
control inputs have been considered: I, as an additional current bias for the first junction
of the array, and I, which generates a magnetic field uniformly coupled to the array.
Junctions are modelled by the usual Resistive Shunted Junction (RSJ) model, which
well describes both SIS and SNS type junctions, and the loops self inductances are
represented by inductors series connecting the junctions. The bias current A is supposed

FAare Directiom of Nonlear Dymics in Physical .,d Biological Sysms
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to be spatially uniform. For simplicity we will assume that all the junctions are equal,
as well as all the loop inductances. We Parenthetically note that the circuit in Fig. lb
is formally equivalent to a lumped-element model of a Josephson transmission line, the
only difference being the finite spatial junctions separation.

MSISTOR f

ARRAY JUNCTIONiS
DETECTOR

b) LL LIt

SM-i

Figure 1. a) sketch of the proposed device. b) its electrical model

By writing the equation for the current in each junction, taking into account the
flux quantization in the superconducting loop4 , and applying the usual normalization
we obtain a set of coupled ordinary differential equations describing the time evolution
of the phase 0 of the N junctions in the array and of the detector:

-y + 219t - 'it- 1)) - 1'(20 ...- $.)= sino.$ + a4 + qi, (lb)

(qIj(N-1) + it) - ; (N- 4wv-1) - ap(.kN - 4ý1) = 5nO4N + Ia#N + 4N (1C)

ID + ap(4 w - JD)= nD+ E$D+ 4D (1d)

where the curent is normalized to the junction critical current Io, time is normalized to
the inverse of the plasma frequency w., a = 1/wpRC, = 2rLlo/Oo is the well known
SQUID screening parameter and is also a measure of the array discreteness, (it is easy to
see that A' = Az2 /A,, A. being the junction spacing), p = R/R. represents the coupling

between the array and the detector, %y, is the normalized control current, %. and qI(.}

the normalized uniform and local magnetic flux, respectively, and 2_< n < N - 1.

RESULTS

We have numerically integrated Eqs. (6) using parameters close to the experi-
mentally reasonable values. In particular we investigated high damping configurations
(a = 1) typical of high Tc superconductors devices. In. Fig. 2 is shown a typical IV
characteristic of an array of 10 junctions in presence of weak uniform magnetic field
(qs. = 0.1), weak dissipations (a = 0.3) and no coupling to the detector. The phase
evolutions corresponding to the points (A) and (B) of the IV curve are shown in the
inserts. R~om the inserts is easily inferred that point A belongs to the first zero field
step (ZFS1) of the LJJ (a single fluxon (antifluxon) propagating along the junction
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at almost constant speed and being reflected at the edge a an antifluxon (fluxon)).
Likewie the point (B) on the small step at V • 1.3, is on the fifth order Fiske step
(FS5) (a periodic motion consisting of 3 fluxons moving in the positive x-direction until
they reach the array edge where only 2 are reflected as antifluxons). We note that those
two different dynamical states are obtained with a very tiny change (0.01) of the bias
current.

1.00

i o.9o

A •

S0.70

0.80

0.50 .0 I

0.50 ...... ....... 1".60 116 . . .2L
normalized voltage

Figure 2. IV characteristic of a 10 junctions array. The two inserts show 3d plots of the phase evolution

corresponding to the bias point (A) and (B). in the Figure.

To investigate the behavior of the device as a microwave oscillator' we have chosen
the parameters in order to produce a one direction fluxon motion (flux flow). In this
state the magnetic field present at the left edge of the array injects fluxons that are
then driven by the bias current with an almost constant speed toward the right end of
the array. There the fluxons are absorbed generating a microwave radiation.

ffo

10

40 -) b)

2 4 6 ... .. .. ..
'0.00 0.40 0.80 1.20

LOOP NUMBER normalized voltage

Figure 3(left) Contour Oat of the magnetic field inside the array when biased in the flux flow regnme.

Fig~ure 4. (rht) Detector (solid fine) and array (dotted line) voltage vs the detector current for different
values of the magnetic field: a) V. =0.1, 6) =0.
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The rate of injection (which determine the frequency v of the radiation, and also
the de array voltage V = 2z@ov) depends upon the value of the external magnetic field
q (or the control current -1.) and the bias current y. As an example of this dynamical
state we show in Fig. 3 a contour plot of the magnetic field inside the array. The
parameters value are N = 10, y = 0.17, 91L = 0.5, 9. = 0, p = 0, a = 1, # = 5.
The high a value is responsible of the absorption of the fluxon at the right edge in
the absence of load (p = 0). The value of # is such that a fluxon can almost be fully
trapped in a single loop, and the resulting motion is nonuniform. When a load junction
is attached to the array (p > 0) it senses the electromagnetic field generated at the array
edge. In the flux flow regime this electromagnetic field will have a strong component at
V ix, which can interact with the detector generating for instance the well known
rf-induced steps in the IV characteristic. The situation is shown in Fig. 4 where we
have chosen the same parameters as for Fig. 3 but p = 0. Fig. 4 show. the detector
(solid line) and the array (dotted line) voltages vs the detector current yD for 9, = 0.1
and it is well clear a region of phase locking 0.75 : 7-D < 1.05. Fig. 4b shows the same
situation but for f,. = 0.5. The main effect of changing the magnetic field is a change
in the generated frequency, thus demonstrating the tunability of the oscillator. In both
Figs. 4a and 4b it is possible to observe a small change in the array voltage when the
detector current is varied, this loading effect should be avoided in a real application,
possibly using a series dc-block capacitor between the oscillator and the load.

CONCLUSIONS

We have investigated the dynamics of an array of inductively coupled Josephson
Junctions and shown its feasibility as a microwave generator when operated in the flux
flow regime. The device can be realized within the present high Tc junctions technology,
and work in this direction is in progress.
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It is well known that a lossless one-dimensional Josephson junction can be described
by the Sine-Gordon (SG) equation in laboratory coordinates':

uSa - ut = sinu, (1)

where u denotes the phase difference between the wavefunctions in both superconduct-
ing electrodes of the junction. Furthermore, u. is proportional to the magnetic field,
while u. - to the electric field within the junction.

The fluxon plasma interaction plays an impotrant role in the analysis of time-
dependent phenomena in long Josephson junctions 2•. More generally, the interaction
between a strongly nonlinear (soliton-like) component of the solution and a quasi-linear
small-amplitude oscillation is discussed also in other contexts, such as dynamics of the
SG kink in the presence of perturbation4, and the qusi-particle (de Broglie-like) state
of the SG system.5

Usually, a small-amplitude contribution v is determined approximately by the lin-
earization of eq.(1) about a strongly nonlinear solution uo:

u=uo+v, v<u0. (2)

Substituting (2) into (1) and retaining only linear terms we obtain a linear partial
differential equation with respect to v, which can be solved for a relatively simple
unperturbed term uo, e.g. for a static kinks.

The aim of this paper is to present a more general and practically useful perturba-
tion method, making possible to linearize eq. (1) in the presence of arbitrary nonlinear
solution U*.
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A general multiperiodic solution of eq. (1) can be written as 7-

u= 2il O(z + e/2 I B)(3
e( IB) ' (3)

where B is a g x g Riemann matrix, e denotes the g-dimensional unit vector, z E Co is
a linear function of space and time coordinates

z-=kiz+wjt+z•, z,t, z6ECO, j-1,2,...,g

and e(x I B) denotes the g-dimensional Riemann theta function

e(z I B) = E exp(i2wnx + i+unBn). (4)
nEZo

Let us consider a (g + 1)-periodic solution (3) where g denotes strongly nonlinear
components (soliton trains, breathers etc.), while the term labelled by # + I represents
a small-amplitude quasi-linear contribution. The reality conditions imply that9

Bii = 1/2 + ifili, Bqj = ij ,

The expression (4) describing the (y + 1)-dimensional theta function can be rewrit-
ten as

0(i I B) = 'exp(i2rniz, + irnjBj,)O(. + acnj I B), (5)

where i, B denote a (g + l)-dimensiona vector argument and a (g + 1) x (g + 1)
Riemann matrix, respectively. In the small-amplitude limit we have • ) 1,q, =
exp(-rfi) < 1, thus the summation over nj can be restricted to the leading terms
n 0, ±1 and

0(iIb) =O( I B) + iqj[ e-i'e(fz - I B) + e'"O(z, + aI B)] , (6)

where 9 f= 21rzj = Isz , (flit, and the dispersion relation for the perturbation term is

Substituting (6) into (3) and retaining only the terms linear in qj we obtain

u,+, = u, + q, + O(q) , j=g + 1, (7)

where

=2 [-,,O(s + el2 - a, I B) + ei",e(. + e/2 + aj B)"=(z + e/21 ) +

"-MO(z - oi B)+ ec',(z + o, iB)]

e(z B) (8)

352m I . m a I I II I I



7

It should be noted that the small-amplitude solution exists both for 0, < I and
nj>1 .

For 0j < 1 we have pj imaginary, and consequently the small-amplitude solution
is decaying rather than propagating in the z direction. The single perturbation term is
complex, hence in order to keep the solution real we have to combine two perturbation
terms, i.e. 9 = p/ + f(t. Such a combination is equivalent to a breather train, which
oscillates in time, but is stationary and localized in space.

For fl0 > 1, both l, and pj are real, and the small-amplitude wave is propagating
in the z direction.

The dispersion parameters kj, w,,pj, ni as well as elements of the matrix B can be
obtained from the spectral analysis'. Here, however, we have used another approach
based on the Schottky parametrization of the Riemann surface".

As an example, let us consider a one-dimensional Josephson junction of finite length
L, immersed in the external uniform magnetic field. Assuming time-periodic dynamics
of the junction we can formulate the problem as solving eq. (1) for u subject to the
following boundary conditions:

u.(0, t) = u(L, t) ,(9a)

u(z, t) = u(z, t + T) + 2rn. (9b)

where 8 is a constant proportional to the external magnetic field.
As an unperturbed solution we take two fluxon (antifluxon) trains moving in oppo-

site directions with the same velocity"1 . The static magnetic field is taken into account
as the third stationary soliton train. Unfortunately, such a solution does not satis-
fy the boundary conditions (9a,b), thus we try to solve the problem by consecutive
approximations, including more and more quasi-linear components (plasma waves).

A more detailed analysis shows that plasma waves do not interact with each other
in the small-amplitude limit, thus

00
U,(O' t) u%'(O, t) + ~qiVi,,(O't) , (10)

where uo,. denotes the unpertubed solution, qj - a free amplitude, and vj,. - a plasma
wave with the time-period commensurate with that of the unperturbed solution.

For given boundary condition u,(0, t) = •, one can determine the coefficients qj
using standard methods. (Because of symmetry it is sufficient to consider only one end
of the junction). Fig. 1 shows an approximate solution fis(0, t) for 0 = .5 and N = 15
small-amplitude terms taken into account. One can see that the convergence to the
exact solution u.(0, t) = 0 is very poor, and the problem of completeness of the set vj,.
is still open. Nevertheless, both sides of the Parseval's relation differ by less than 5 per
cent, what indicates that the set of small-amplitude terms is probably complete.

Similar calculations performed for P = 1.25 yield qualitatively the same result. In
the language of fluxon *dynamics it means that in both case we deal with the same
mechanism corresponding to the zero-field steps (ZFS). On the other hand, the above
solution is not unique, and one can consider also other mechanisms of fluxon reflection
from the boundary12 , givMng rise to the Fiske steps (FS).
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Figure 1. Approximate solution i(0,t) for N = 15 perturbation teruw taken into account (solid
line) and exact boundary condition u(0,t) = # (dashed line). The timeperiod is T = 22.74.

Thus, on the basis of a lossless model (1) we are not able to determine what kind
of mechanism is preferable for given value P of the external magnetic field. It seems
that the analysis of a perturbed SG model is needed to clarify this problem.
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OBSERVATION OF MULTIPLE PARTICLE TUNNELING IN

HIGH QUALITY SUPERCONDUCTING TUNNEL JUNCTIONS
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2Istituto di Cibernetica - C.N.R. - Napoli - Italy

We report on the temperature dependence (1.2K<T<4.2K) of the
subgap current in high quality superconducting tunnel junctions (STJ's),
that is the tunnel current in the voltage range O<V<Vg , where Vg=(Ai+
A2)/2e is the gap voltage and A, and A2 are the forbidden energy gaps
for the electrodes.

In the BCS model the subgap current of an ideal loss-free barrier
in a STJ is mainly due to the tunneling of the thermally excited
quasiparticles (single electron tunneling)[1]. However, in real devices, it
has been found that, in the voltage range Vg/2<V<Vg, the measured
current is slightly higher than the expected single electron tunnel
current [21; the agreement between theory and experiment is recovered
considering another intrinsic transport mechanism: the multiple particle
tunneling (MWT) [3], [4].

The MPT is a tunneling process according to which one or more
Cooper pairs in one superconductor tunnel into the other superconductor
and dissociate in two or more (m) quasiparticles (or vice versa). The
MPT appears, for a symmetric junction, as current jumps in the I-V
characteristic, at voltages Vg/m and is proportional to e-ms where m is
the tunneling order and s is related to the barrier thickness and height
[5]. This suggests that, to a second order of approximation, also the two
particle tunneling (m=2) has to be taken into account and, in fact, on this
process we will focus our attention in what follows.

A simple relation for a symmetrical junction at T=0 can be derived
between the ratio Alvg/2/AIvg of the step heigth at V=Vg/2 and the
one at V-Vg and the normal conductance per unit area Gnn/A:

,AIVg/2/AIVg -I K Gnn/A
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where K is a numerical constant roughly equal to 10-2 g t&m2[3], [5].
Moreover, the step height and width are slowly dependent on the
temperature and slowly dependent on small magnetic fields.

The junctions investigated were obtained from Nb/Ai-AlOx/Nb
trilayers using different processes, all based on the selective anodization
of the top Nb electrode. In the table the most relevant parameters for
eight STJ's having different areas and normal conductances are listed.

Table 1. Experimental parameters.

SAMPLE A Gnn1/A A1v 5,• &Iv$ W(V,2)/(&IV2) K T-gpinz V3J
.m

2  mhopIn I I gin2 mv

511O-I 138 6.3E-04 0.096 230 14.2 E-04 0.70 1500 83__
13SEZ-3 14 26E-04 0.220 100 I2E-04 US 0 So. 0 5
4616•.•-3 I2W0 1.2E-04 OAS, 430 1.3 E404 0 I180 73

,6E1.3 I Z0 2.,, E-04 0.260 720 3.6 E-04 1.7 9500 64
30Es-1 IS.OE-04 2.800 2700 10 E-04 2.0 62 50
IS1152 820- 13.7E-04 0.64 8.10 7.6 E ,04 2.1 so 48
12ll2-1 138 i3E- ' 0.10 90 11 E-04 4.8 1109 St
121.4. 230 I2.OE-04 123 1400 116 EI4 18.2 1s 58

1Gnn: normal state conductance
2 T-gain-Isg(1.2K, O.SmV)/ lsg(4.2K, 0.5mV)
3 Vm-0.7AlvgR; R-2mV/ lsg( 4 .2K, 2mV)

The quality factor value Vm-2.7V at the lowest temperature
(T=1.18 K) is a remarkable result, although according to the theory this
value should be about 1000 times larger. To better understand this
point the I-V characteristic at different temperatures is reported in
Fig.l: as the temperature decreases the subgap current quickly
decreases.

When the temperature is sufficiently reduced (T<3K) step-like
subharmonic stuctures begin to be observable in the I-V characteristic
first at V-V9/2 and later on at V-Vg/ 3 (as indicated by arrows); in

E
10 T-4.259 K381

10 =2.990S-2.800
: 10 -5 :2,585

-2412S=2. 130
10- -. 914

- -1.200

100 . 1000 0 .3000" 4000
voltage (pV)

Fig.1: Experimental I-V characteristics at different temperatures.
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Jt

these measurements the Josephson current was almost completely
Ssuppressed by a rather small magnetic field (-100 Gauss). We report a

* list of experimental elements indicating that these structures are due to
the MIPT:
1) weak dependence on small magnetic fields and on the temperature;

* 2) step like structures;
3) absence of higher order mechanisms (m>3); (the probability to
observe multiparticle tunneling decreases strongly with the order m).

For the same sample, we report (Fig.2) the temperature
dependence of the subgap current Isg, compared to the theoretical single
electron current Ise, at different voltages. At V-2 mV and at T-4.2 K the
junction is practically ideal, but a saturation is observed as the
temperature is decreased. At V-0.1 mV the experimental points are well
fitted by the theoretical curve. A small residual current can be
attributed to ohmic losses through or parallel to the barrier; this results
in a very low spurious loss for the barrier so that Rspurious> 104 Rnn (Rnn
is the normal resistance).

10 10

10-1 10-1

10- Q@~q~O 10-1

100- 0 10-

10 101 1 L

10 -4 . . .. . . . , . . 10 - . ... . ... • . . • . .
10- 10'

10- 10

1 0 0 O O b -~ 1 0 ý

10 10
T (K) T (K)

Fig.2: Temperature dependence of the subgap current Isg, compared to the
theoretical single electron current Ise, at different voltages.

The subgap current in a STJ can be thought of as the sum of three
indipendent contributions , i.e. , single electron tunneling current, two
particle tunneling current and excess current due to ohmic losses in the
barrier; the relative amplitudes of these parallel transport mechanisms
depend on the temperature and on the quality of the barrier. The two
particle contribution to the tunnel current determines the main
observed departure from the single electron theory in the voltage range
Vg/2<V<Vg.

The plot in Fig.3 reveals more clearly the relative magnitudes and
widths of the structures at Vg/ 2 and at Vg. It seems clear that the
current increase at Vg/2 is appreciably broader than the one at Vg; a
clear explanation of this effect is not known at the present time.
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Fig.3: The I-V characteristics near Vg and Vg/2. The Vg region is referred to
the left and bottom scales while the Vg/2 region to the right and top scales.

In the table we report the experimental K values calculated from
the measured value of the ratios AIvg/2/AIvg and Gnn/A. We can
observe that the smallest K value is about a factor 100 greater than that
predicted by the theory; this implies that the two particle step is much
larger than the expected theoretical value. It can be stressed also that
the disagreement is greater the smaller is the temperature current gain
(T-gain); in other words, smaller spurious resistance junctions seem to
have a smaller two particle step height. This observation is consistent
with the possible explanation of the disagreement between the theory
and the experiments in terms of barrier non uniformities proposed by
many authors [6], [7].
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INTRODUCTION

A large number of explanations for superconductivity in high-T. materials have
been proposed. In particular efforts are devoted to detailed understanding of the pair-
ing interaction mechanism. When a pairing potential has been established the Bardeen,
Cooper, and Schrieffer (BCS) approach is often used to find T" and other relevant phys-
ical quantities'. In the following we shall apply the BCS strategy to high-Ta supercon-
ductors using a phenomenological pairing interaction without discussing the detailed
microscopic origin of this interaction. Particular emphasis will be put on the nonlinear
properties of the BCS gap equation with anisotropic gap parameter.

MODEL DESCRIPTION

In the description of the pairing interaction of ordinary low-temperature super-
conductors extended electron wave functions are employed. In the high-Tc materials
we shall instead start from a tight-binding model of the electronic states with the energy
dispersion relation1 -4

ek = A[-2(cos(kfa.) + cos(ka,)) + 4Bcos(kIa.)cos(k1 av) - 2Ccos(kza,) - ] (1)

p denotes the chemical potential and a2 , a., a, are the lattice constants. Here we shall
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assume a=a,. The parameters A, B, and C are related to the hopping probabilities
from site to site in the crystal'. k, k., and k, are the components of the electron
wavevector k.

Assuming onsite and intralayer nearest neighbour attraction, the pairing potential
becomes 3,4

me$Vkk, = go + 2.co((- c + 2g, co(, - k, (2)

go is the strength of the onsite pairing interaction and g,, g, denote the pairing inter-
action strength in the x- and y-direction, respectively. The BCS gap equation reads

Ak = E VkkFk, (3)Nk,

N is the number of lattice sites and Fk is defined by

Fk Ak 1rk = _--•k tanh(lEk) ,(4)

where f = 1/(kBT) and kB is Boltzmann's constant. Ek = + Ak, is the quasipar-
tide excitation energy. In order to solve the gap equation we use the following solution
ansatzs2.

Ak= Ao + 2Acos(k~a.) + 2Acos(ka)(5)
which leads to three coupled nonlinear algebraic equations

A0 = NkEFk
k

A. = 9-5-cos(kza=)Fk , (6)
k

AV = 9K E cosq(Alav)Fk

k

In (6) we set both A and kB equal to unity which is equivalent to measuring all the
energies in units of A and the temperature in units of A/kB. A physical representative
value of A is about 0.05eV which leads to A/kB = 580K.

NUMERICAL SOLUTIONS

In Ref.2 a detailed study of the solutions to Eq.(6) has been done for the case of
absent onsite pairing, i.e. go=0. It is there shown that the transition from the normal
state with vanishing gap to the superconducting state with nonzero gap results from a
pitchfork bifurcation as the absolute temperature is lowered from above the transition
temperature T, to below. Depending on the value of the chemical potential it, the su-
perconducting state can either have s-wave symmetry (A. = A,) -,,e symmetry
(A. = -A.). Furthermore, it was found in Ref.4 that a second ph insition from
either s-wave or d-wave symmetry to a mixed s- and d-wave solution couid take place at
a transition temperature T,1 < T. for a certain range of a-values. Note that changing A
corresponds to changing the filling of the conduction band of the electrons responsible
for superconductivity2. Pitchfork bifurcations in the gap equation have dramatic effects
on measurable physical quantities, as e.g. the electron specific heat, spin susceptibility,
etc. In the electronic specific heat C given by2
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C 1,k/,62k\ (+ #EE)C 2  k d6 Ekaech'_ (7)

each pitchfork bifurcation leads to a discontinous jump. From calculations of C versus
T in the case go=0 and p=-2.0 it is evident that the two transition temperatures T, and
T., are too far apart in comparison with experiments'. This deficiency can be resolved
by including the onsite pairing interacion go.

In Fig. (1) we show C/T versus T calculated from Eqs.(6) and (7) using the param-
eter values

g.= -g, -=1.2, #=-2.0, B=0.45, C=0.1 , (8)
and go = 0.3. The chosen value of p give rise to a double phase transition which leads

4.0-
t• ILO -

5-S• 3o-

20- i
II

(10 0 O 0 015 02D

Figure 1. The electronic specific heat C/T versus T at go = 0.3. The other parameter values are
given by Eq. (s).

to two peaks in the electronic specific heat. By including the onsite pairing we have
been able to position the two peaks close to each other as observed in experiments. In
order to demonstrate the variation in distance between the two transition temperatures
we show T, and Tci as function of go in Fig. (2).

SUMMARY

The influence of adding an onsite pairing interaction in a BCS approach to describe
high-Te superconductivity has been investigated. Previously, it has been demonstrated
that depending on the value of the chemical potential a phase transition between two
different superconducting states may occur resulting in a double peaked structure of
the electronic specific heat. Here we have shown that including an onsite paring makes
it possible to adjust the distance between the two transition temperatures and thereby
fit the calculated electronic specific heat to experimental findings.
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Figure 2. The transition temperatures 2', and Tj1 as function of go. Parameter 1"zlues as given by
Eq. (8).
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STATICS AND DYNAMICS OF FLUX VORTICES

IN DISCRETE SYSTEMS
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Discrete Josephson Structures (DJS) are involved in different fields of low temper-
atures physics. Here we focus our attention on Id arrays and 2d square arrays of short
Josephson junctions (cfr. Fig.1). While Id arrays are interesting for the development
of Flux-Flow based devices [1,2], 2d arrays, besides their intrinsic properties [3], were
proposed as models to explain some properties of High T, Superconductors [4]. In
both these structures the non-linearity present in the Josephson element plays a fun-
damnental role permitting solitonic solutions [5] called fluxons (often also flux-quanta
or 'vortices' in the 2d arrays).

Equations for the gauge-invariant phases of each junction Oi in a DJS can be
written utilizing in our case the equivalent circuits of Fig.1. Here we report the
equations for the Id case only (2d equations can be found in [6]) that are:

C R
a)

b)

Fig.1: a) id array; b) 2d array.

Equations for the gauge-invariant phases of each junction 4,i in a DJS can be written
utilizing in our case the equivalent cirt ;dits of Fig.1. Here we report the equations for
the ld case only (2d equations can be found in [6]) that are:
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dt d+ d2•,

here/3 = 2IrLlo/fo with L the single loop inductance and Io the Josephson current.
Times are normalized to the inverse of the Josephson frequency Wj = (2r/o1/C#o) 1/ 2

with C the single junction capacitance; a is the quasiparticle loss [7]. Boundary
equations are:

d20,~= (0)- '[02 - +b11 - a-!j- - Sin- i + 17* (2a)
___ _ dvk

d 2 ON( -'O a -+ (2b)
d-t2  /- O] - (t - sinON + ttN.

Where ill and 17N are the normalized magnetic fields at the arrays ends. These equa-
tions looks like a discretized version of the Sine-Gordon (more properly Perturbed
Sine-Gordon) equation. The discreteness effects in such systems are linked to the
parameter P well-known in SQUID theory. Essentially # controls the number of flux
quanta per cell of the array. In fact P is simply related to A.j, the so-called Joseph-
son length, by the relation Aj = a/,61/2, where a is the cell dimension. From Long
Josephson Junction (LJJ) theory we know that fluxons extend = Aj, so for P < 1 the
fluxon extends over several cells, while for P t 1 we have substantially one fluxon per
cell; finally for P : 1 more than a fluxon can be put in a single cell.

4._ 1 __

.6S. .6 -

I-I
U)4

.2

o I I , I , l L

0 2 4 6 8

Fig.2: Dynamical range of ZFS1 in a Id array as a function of/3. Arrows indicate
the switch direction; here a = 0.25 and N = 20.

Though many properties of Id and 2d systems are essentially the same we stress
that important differences exist between them. In particular we remark the presence of
frustation effects on the phases of the wavefunction associated to each superconducting
island, i.e. the spins in the glass analogy, in a 2d array, that no have analog in the ld
case (we remember that spins were introduced in HTC theory by Ebner and Stroud
[41 to explain the glassy properties of these systems).
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ID ARRAYS

Dynamical solutions of Eq.s (1) were found by numerically integrating it with
a Bulirsh-Stoer algorithm. We have to distinguish two type of solutions: 1) free
running fluxons, that are the Discrete Sine-Gordon analog of ZFS in LLJ; 2) Flux-
Flow solutions in which an external static field generates fluxons at one edge of the
array. ZFS1 dynamical range as a function of 0 is shown in Fig.2. We note the
progressive reduction of the dynamical region: from below due to pinning of a fiuxon
between two junctions, and from above due to the increase of oscillations on the
trailing edge that kills the fiuxon over a given bias current. We note also the presence
of hysteresis above • - 27r where sweeping the current toward 0, the fiuxon does not
annihilate at the depinning current but survives again until it remains pinned in a
cell of the array. Some Flux-Flow results are collected in Fig.3, here we report the
dynamic range of Flux-Flow Steps as a function of ?I for two different values of a and
for # = 1; the region below the depinning current is the first lobe of the magnetic
field pattern of the array (the field is supposed to be uniform over the array). We
note the presence of resonances (typical steps are presented in the inset) both near the
McCumber branch of I-V and above this, these are due to the interaction of Flux-Flow
with array resonances in magnetic field .(Fiske steps in LLJ).

2.5

~2 4

0 .5 1 1.5 2 2.5

Normalized Magnetic Field

Fig.3: Dynamical range of Flux-Flow steps in a Id array as a function of r/for
two different values of a. For these simulations /3 = 1 and N 20.

3D ARRAYS

An interesting question is the presence of an auto-induced frustation over the
spin system; this is another aspect of Self-Induced Magnetic Field effects (SIMF) that
recently [8] was introduced by some authors in the study of 2d arrays. For finite
values of P each flux quantum induces frustation over the spin system associated with
the square array. We can see this in Fig.4 where the spin system over an array was
rebuilt from the junction phases (differences) by 'integrating' the junction phases first
along the horizontal line of array, next along the vertical line and viceversa giving two
plots for a single values of P. For 1 = 10-3 the two plots appear pratically identical
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confirming that no frustation was induced by the self-field of flux-quanta, but for

# - 10-1 we see clearly a difference between the two plots, so the spin system does
not have a preferred state. These considerations can be carried on until # becomes
2! 2, in fact beyond this point it is impossible assign a definite value of phase at
a superconducting island because A2 , = 2va/p, the typical distance over which the
pha changes by 2w in a superconductor, becomes comparable with a, i.e. the island
dimension.

a) .........---___ _____ ..... .... b )

c ) .... . ..... . .... .... d )

Fig.4: Spin system obtained by phase-differences: a) 0 = 10-3 horizontal before
vertical; b) f = 10-3 vertical before horizontal; c) and d) the same for i = 10-.
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SOLITON TYPE PROPAGATION IN HTcS MATERIALS
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INTRODUCTION

The aim of this paper is to discuss the model ,2 of a planar thin
film made of high temperature superconductive (HTcS) granular material.
The model exhibits the soliton type effects in the form of solitary waves
or even periodic wavetrains.

It is worthwhile to note that the discussed model reflects to some
extent the commonly spread opinion that the properties of HTcS materials
essentially depend on the tunnel junctions formed between the grains but
weakly on the bulk material properties, especially in cases when the pro-
pagational effects are considered. This conclusion is confirmed also by
the fact that in the discrete version, the discussed model coincides with
the system of algebraic equations used in the past to describe the regular
array of short Josephson junctions 1,2.

So far there is no proof that the model leads to the system of com-
* pletely integrable partial differential equations (PDEs) and its general
* solution is unknown. Nevertheless one can construct a rich class of parti-

cular solutions on a basis of reduction to the two dimensional case, (more
precisely by the reduction of 2+ 1 case to 1 + 1 or 2 +0).

We report a few classes of such solutions and, as an example, we show
a vortex - like pattern in the dynamic case. The reader will observe close
resemblance with the two-dimensional XY models of statistical mechanics
applied 3.iften in the analysis of two dimensional arrays of superconducting
islands

The last part of this report is devoted to the hexagonal array in
order to compare at least the equation structure with those of regular
array ones.

REGULAR ARRAY

The system of PDEs which describes the regular network of short Jo-
sephson junctions in the continuous limit can be derived starting from
Hamiltonian X, which depends on two variables pi and 92 being the order
parameters ascribed to the horizontal or vertical branches of the network.

= I h(x,y,t) dx dy. (1)
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In the discrete version op and v2 represent the phase differences
across each of horizontal and vertical junctions, respectively.

Starting from the density
2 2

h [9 1  +9. +( h. )]/2 + 2 - cose1 -cos 2 . (2)

where 9 and p2 depend on space coordinates x,y and t being the real time
multiplied by the Swihart velocity, a standard procedure leads to the sys-
tem of equations

V1,yy " V1n "1, i sn = 02.,'
"2 - -" sino, = . (3)

Observe that the dissipative terms in this system are neglected
although dissipation p2 ys an important role when the theory is compared
with experimental data. However, the analytical solutions if exist, can be
found only under this simplification. If it concerns the static version,
some consequences of the set (3) were discussed also in '.

It is seen that if 01 =0 1(y,t) and v2 =- 2(x,t) the system (3) reduces
to uncoupled sine-Gordon equations (sGe).

Another solution in form of the plane wave leads as usually to ordi-
nary differential equation (ODE). Namely, if z:=Kx 4-vy+cot and 9i=V,(z),
i-1.2, then for ;P=vp ODE takes the form

[l+ae(I-aesin qp)'cos9]p ý+a2(a2-l)(l-a sin2op)'3t2opA = sinop, (4)

and putting sinp2 =sinqp1/a we obtain two branches: static (O=0) and dynamic

(co2 =&2 +v2 ) with a=-vlx and a=Kl/V, respectively.
The next class solutions follows from an observation,that if *=€(•,r)

satisfies sGe (C-space,r-time), then
92 := O(,x+t, -,ey+t) and 91:= z 2+xr, (5)

with =+±2112and z=±1, (where both signs can be taken independently), also
satisfy (3).

Solutions of this type can be either solitonic or quasi-periodic or
even mixed but always of a dynamic character.

As an example of solutions following from (5) we show in Fig. 1 a two-
soliton solution in (C,r) with different soliton velocities. In the left
hand side, the "arrows" represent o22E(0,2,r] and in the right hand side we
plot the quantity defined as H:=p 2,y- o ,,. H is interpreted physically as
the unique component of magnetic field perpendicular to the array plane,
(continuous lines denote positive field, dotted lines - negative).

One can find a close resemblance of the patterns in the left column
with the drawing of vortex structures obtained as the result of applica-
tion of XY models to Josephson arrays. There are however some differences.
In the most papers starting from XY model, there is considered a different
array topology. Here, we consider an array constructed from junctions ar-
ranged in such a manner that there are two components of the current and
hence two order parameters. The usually discussed structure deals with
"overlap" geometry, (which is convenient for fabrication), and involves
only one component of the current and thus it requires an unique order
parameter. We are convinced that the topology considered here is more ade-
quate for a thin film granular medium.
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Comparing the left and the right plots of Fig. I one can observe that
the structures of both fields i.e. gp and H are qualitatively similar if
both solitons have nearly the same velocities, but when the velocities are
different, the patterns differ significantly too. Since sinvp determines

------- Fig.l. Vortices of 02 (on the
_.....__...,_.....left) and ma etic field H

-.........------ ......... _ (on the right) according to
-........,. ,,_........._ (5),if 2-soliton solution of

...... ,....... sGe is applied.
-... i...•, .........- Soliton velocities:. .- •---. . a) 0 and .55;

-'I ------------ ------ _________

S............ ,t,,.•,..b) .42 and .55;
---" -------- ____.. .-- - - ----- --- _ __ __ _

- ----------- I --

::::. :::::... :::..::: .. .

- ----- -----

.......................

------------------------- --- c) .943 and .946.

a current, the current vortices do not coincide with maxima of magnetic
field in strongly dynamic case. Physically, this effect can be explained
by the rising contribution of terms V ' which also have a meaning of

the currents, but of course they vanish completely in static case.
This stresses the significance of truly dynamic effects.
In order to verify that the discussed system (3) coincides wlth the

description of the regular network of tunneling junctions, observe that
the discrete version of (3) coincides with the system of algebraic equa-
tions for the regular (rectagular) array of short junctions. For details
reader is referred to references

HEXAGONAL ARRAY

A model of granular medium which pretends to be correct should at
leat qualitatively be independent on shape of the elementary cell. This
is the reason that we report here the system of equations for a hexagonal
array. Although there is no evidence that both regular and hexagonal

eto the same results, nevertheless the similarity of equa-tions seems to be promising.We reportibelow the system of equations, which involves now three

de t futions pi(x,y,t), 1-1,2,3,. Starting from the discrete sys-

tem, described by three v•, at the beginning of discrete space variables

and assuming the coordinate system as in Fig.2, (with axes 1,2,3), we ar-
rive in continuous limit at the following set of equations
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sH2 (6)

where indices ,i or ,x' denote the differentiation with respect to the
indicated axis, a denotes the surface of the hexagonal elementary cell and
the Einstein summation rule is adopted. Equations (6) represent, in order
of appearance: the generalized Kirchhoff equation, the definition of mag-

2 1, 1

Fig.2.
-- Coordinate system for the

hexagonal array;
(axes i' and i are
perpendicular).

netic field and the r ed fluxoid equation. From (6) the secondorder equations can be Weied

P J4'-- s(sinopi+ opi,)/2' for each 1. (7)

In Cartesian coordinate system (3my, 3'mx) these reduce to (u:=3 )

( ( 9P+2 -2p33),..+3(¢,-9,,),•+21.(o,-,,),.,=2sj,, (8)

(01 +'P €+'2€m),X-3 (9I "92),W4y2• -93),XY = 2sj2, (9)
2v3 -sj3 =(P 1+42) +#(' 1 -,2). where j,:= sin9.+9 .. (10)

It is seen that for fy with Cartesian y-axis coincident with 3-axis
and x with 3'-axis, equation (10) is analogous to the equation (3) for the
regular structure. Since the equations (7) relate to nonorthogonal coordi-
nate system, sometimes in application, it is more convcnient to take (10)
and to complete the system by the first order equations (6).

We have no strong arguments, so far, that regular and hexagonal mo-
del lead to the same results. In the static c (a/&t0) however, the
rectangular sample biased by dc external current gives qualitatively the
same results both for regular and hexagonal arrays. The current flows only
on the border of the sample and the pattern becomes asymmetrical in the
presence of an external magnetic field. This can he read in favor of the
equivalency of both structures.
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INTRODUCTION

The liquid crystals (LO) demonstrate a broad spectrum of
nonlinear statin and _.dnamic structures in phenomena of
various nature (see (1-3]). one can distinguish some causes
determined the interest to a nonlinear LC dynamics. Firstly
one can examine the LC as the models of other physical
systems described by a same equations. On the other hand, the
LC are in many respects exceptional objects for nonlinear dy-
namics investigation, allowing to sharpen the nonlinear
intuition, to check the different principles of theory of
nonlinear waves propagation in active, inhomogeneous, dissi-
pative media. It is neoessary to note, that in many oases a
nonlinear excitements in LC can be observed visually [1,4],
without using a complex devices, that is undoubtedly
considerable advantage. After all, the investigation of
nonlinear LO dynamics allow better to comprehend the nature
of this state, to determine the various LC parameters, to
work out a new principles for LC devices.

Apparently the existence of a solitary orientational
waves in nematio I#C (NIO) has been first discussed by
W.Helfrioh, P.G.de Gennes, F.Brochard (5]. L.Leger [6]
observed this waves (walls) in experiments on a reorientation
S of NL director by magnetic fields (freederstks' effect). At
present many nonlinear phenomena in LO are being explained onthe basis of solitons theor-y, these ame the vortex d~ynamics
in the region of eleotrohydrodynamio (EHD) instability, themotion of boundary betweef a domains with opposite polar~iza-
ti•ons in chiral smeotio C , the solitary director waves in
shear--flow, the various kinds of defeats and inhomogeneity of
structur~e and transition between them under the action of an
external fields. To describe these effects the sine-Gordton
(SO), the modified Korteweg-de Vries, the noalinear Sohrodin-
ger, the generalized Boussinesq equations, (-model are uped.

In present paper the dynamics of a nonlinear objects -
breathers and nonlinear periodic waves - in LC are
considered. It is found the condition for existence of
quasistationary 80 breather state. The parameters regions for
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stability of nonlinear periodic waves of modified Boussineoq
(mBq) equation are obtained.

M - DEMWS IIn AW
It is known that the LO state (structure, hydrodrnamioal

flow) at fixed temperature is oharaoterized by the direotor
n(, )( (A)2 = I ), indicating a prjaW7 direction of
molecules lgg axes, by -,the velooity v(rt) and by the
pressure P(r, t), where r is coordinate, t is time. In
accordance with this the main set of equations describing LC
dYnamios inolude the oontinuity equation , the fluid motion
equation and the equation of direotor evolution (7]. The
variation of director field can initiate the macroscopic LO
flow ("baok" flow) even in absence of internal causes evoked
hydrodamia current. However on choioe of a special kind
geometry (e.g. pure twist deformation) and at small couple
between hydrodynamioal and orientational subsystems the flows
influence can be neglected. On the other hand it is known,
that the back flow influence leads mainly to redefiniton of
dissipative coefficients in the director motion equation. In
view of this arguments we come to simplified variant of
obtaining of LO dynamic equations, reducing them to director
motion equation only. Let us describe the system Hamiltonian,
depending on director distribution in following form [7]:

J(On/Ot) 2 + Kl(dn)2 + (nrOtn)2 +

+ K 3(nxrotn)2 - x,(n'H)2 I dr,(1

where KI, Y2 , K , are Frank coefficients for splay, torsion,
and bending deformations, J is the density of inertia molent,
Xa is the anisotropio part of magnetic susceptibility, His
the external magnetic field. Using this Hamiltonian and
including the dissipation, we obtain the equation describing
NLO director evolution.

Let us consider the khin homeotropio layer of NLC. The
constant magietio field H is perpendicular to the layer
(Z-axis), the additional time-varying magnetic field h is
directed along Y-axis (9 L 9). We suppose, that initial
conditions are selected so that the director deviation oqour
in YOZ-plane, i.e. we have the pure twist deformation, n =
(O,estn,co0e), where O(x,t) is an angle between Z-axis and
director n.

The LO energ in 0 variable can be written as:

H i ( )2 + K2(e) 2 -)

Here H= + h is total magnetic field.
Then the equation of NLO director motion in dimensionless
variables is

u, - ut + stn(u) = 26(T)coB(u) - r u4 , (3)
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where

do - ([2/%.)'/ , '(,C) = h(t)/B E sosin(OT),

Wo = o/do, 0 = W/wo, u = 20 . (4)

Here C is charaoteristio velocity, 1/Co and do are time
and space scale respectively, r1 is viscosity coefficient.
The equation (3) is the perturbed SG equation. In this paper
we suppose the dissipative coefficient is small, i.e. we
believe, that the inertia effects predominate in LO dynamics.
It is necessary to note, that in main situation the
dissipative effects determine the LO dynamics. However if one
consider the temperature region near nematio-isottropio
transition, where the viscosity coefficient 71 become small

or the lyotropio LO, where a molecules associate in massive
complexes with large inertia moment, then the contribution of
dissipative effects oan be supposed small. Below we imply
Just such physical situation and study the dissipation
Snfluenoe by perturbation theory. On the other hand even if
the viscosity coefficients are not small, our approach give a
qualitative notion about the initial stage of process on the
time t < J/y1 .

We note, that the arguments for magnetic field are valid
for electric field also, it is enough •oreplace in a
formulae and equations the magnetic field H by an electric
field and the anisotropio part of magnetic susceptibility Xa
by the anisotropio part of dielectric permittivity sa" But

the values of electric field must be less then the threshold
of ERD instability.

We write the breather solution of unperturbed SG
equation as:

.Ib(C,') =-4 arCtg( V(5)(J

where

C~ C( (-

I - 41AI 2

I + 41;i 2

do/dI =)(1 - v2 )1/ 2 , do/d¶ = v.

Unlike the soliton, the breather is characterized also by a
frequency of internal oscillations dff/d¶ . Further we shall
consider the small-amplitude ('=a7'Ct8(V/Tq) 1 ) breather. If
initially breather is in rest (velosity v=O), then j = (p(T).

fhe perturbation in the equation (3) is not localized,
therefore to use the standard perturbation theory [8] the
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solution must be represented in form [91:

u(CT) = ubr(CT) + ub(T), 6

where ubr(,T) is breather part. ub(T) desoribe the
baokground oscillations and satisfy the linearized equation
(3). Then we obtain the set of ordinary equations for
amplitude 7 and phase (P

d7/d¶ = ([()-ý2 oos 2 (o() - 2r7 san(()] stn((p) , (7)

d•0/d1 = 1 - 2/2 + 2 •€¢)7 C08 3 ((p) -

- r san((p) Coe(p)[i + 2r2 stn2 (p)],

where !(T) = [8(nub - 2&(Q)cozb8] a A aln(OT + 0),

A = 2So[a 2 + I - 2a CO8•o]1/2, tai0 = asTaOi/(1-acOS0o),

tando = IW/(f - I), a= (? - 1)2 +r2nz1 /2.

Using the method of sequential approximations one can obtain,
that at (0 0 = 1 or 3 the breather amplitude oscillating
decrease. But in region 0 a 0o the parametrio resonance, and
consequently the quasistationary breather state with constant
average amplitude are possible. Let us choose Q = 3 - 80,
where M is small deviation, the case Q a I we disouss
below.

Dividing the phase into fast and slow parts

I= [(R +0) + A(T)]/3

and avera ing (7) over fast variable, we obtain the set for
mean amplitude 7 and "slow" phase W:

dyfd¶ = ICA/8 9C08(ti) I- I7 (8)

dA/d¶ = W0 - (372/2) U ?~/4 -' stn(A)

The phase portrait of system (8) is shown in Fig.1. The

character of phase trajectories is determined on a value of
parameter R:

I OW/2 - 96r 2 / (XA 2 ) I•2 - A ••)

It is seen, that at R > I (Y 1a) the breather amplitude
tend to zero. At R < I (7%-.1b) two stationary points
(saddle and foous) appear. The stability of foous point can
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0.56

77

Figure I1. Phase portrait of system (8): a) R < 1, b) R > 1.

be determined by coefficients matrix of linearized system
(8). It oan be shown, that trace of matrix is equal to -r <
0, i.e. the focus is- stable. Thus we obtain, that at R < 1 we
have the stationary state.

At to the perturbation frequency Q a 1, one can see,
that it is the resonance frequency both for background andj for small-amplitude breather osoillations. This fact leads to
arising of hysteresis phenomena in breathers dynamics [10].
However for rather small strength of perturbation our results
qualitatively remain valid at f) a 1.

Analogously one can show that at At the breather
synchronized with external field exists inregion 00 = 2).
The existence of similar states is concerned with compensa-
tion of a dissipative losses of energy by energy flow from
maeietic field.

In conclusion of this section we mention, that at some
parameters 11 and a0 a stochastic breather dynamics is
possible* The chaotic RULO director motion takes place if the
following condition is satisfied:

I -exp(4r) 8.CQ 2/3

SI SMABUMIT OF SOLITI AMD ONILIUME
PUIODIC COtnI'WICNA WAVES

As a rule the expansion of nesiatic free energy is
restricted to terms with quadratic space derivatives. This
approah is using for static and linear processes. However at

stwl ofevolution of nomuilarn director distribution or at
inv~atigstion long-time LO dynamics the account of next terms

acount of h st gradient terms leads to nUT equation
integrated by Inverse scattering transform method. In this
case a nonlinearits ct e honneced not with external fields,
but with anharmonioety, which the terms of four and highest
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order introduce.
Thu the ener density has form [11]:

H = • [ ) + j(e)2 + A(ex) 2 - B(8g )2 ], (9)

where A, B are the oombinatione of coeffioients at four
order invariants.
Then the direotor motion equation is written on dimensionless
variables as

u -,u- - Stgn)6(ua;)nut - atSn(P)uCE; = roUT, (10)

whert, == /0l1/2,. u=aeO, a= A/112 9 =B/K2 ,

Sz- lat= lI2 ja= • 121/2/( ).

n ==2
1/2 71 (IOJ/(jx))1/ 2 , n : 2.

The equation (10) is the perturbed mBq equation. We note,
that this equation also arise at study of mono- and diatomio
chains with a oertain kind of interaotion between partioles
[12]. We shall investipte the linear stability of solitons
and onoidal waves (at ro= 0) by Whlithem method whioh is very

effeotive for Lagrange systems. The study of stability is of
interest for experimental observation of nonlinear exoita-
tiones in LO. At n = I in (10) we have Boussinesq equation
(Bq) integrated unlike the mBc equation by 1ST method. The
stability of solitons and periodio waves of Bq was oonsidered
by J.G.Berryman 13], Fal'kovioh et al [14]. In partioular in
[14] by usig Shabat method it is shown that Bq soliton is
stable at velooities v > 1/2 and unstable at v < 1/2. The
parameters regions for stable nonlinear waves was obtained
also. Same result for solitons was found from analysis of
oonservative laws and was oonfirmed by numerioal oaloulation
in [151]. The unstable Bq soliton is divided on two stable
ones.

At first let us oonsider the stationary solutions of mBq,
that we shall study there. This are

a) The nonlinear periodio wave oorresponding
to spiral distribution of LU direotor:

u(,T,) = m(2KO/W) + V/2, e - kC - o (Ila)

with dispersion relation :

S- k2 + (2K/.) 2, k(2 - mW) = 0. (12a)

We shall name such wave as "rotations wave" (RI).
b) The nonlinear periodio wave, corresponding to

direotor distribution, in that the molecules is deviated from
vertioal line on an angle less than 9:

u( = tn-9 (m'sn(2Me/')) + W/2, (l1b)
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with dispersion relation :

U- + (2K/W;2.k 4 (2m2 
- 1)=0 (12b)

We shall name it "oscillations wave" (OW).

o) Solitary wave (soliton):

u(tT) = 2t-i 1 [ ezp(mo0 ) 1 (11o)

with dispersion relation :
W= (1 - v2 )/(k) (120)

Here k is the wave number, W is the frequency, m is the form-
factor (elliptic functions modulus), am and sn are the
elliptic amplitude and sine respectively, K wK(m) is the
complete elliptic integral of the first kind. To use the
Whitham method let us introduce Lagrange function,
corresponding to equation (10):

1+0

LO - fUu)2  2 (X)4 - ( d+ (13)
2 -

Then the set of equations, describing the evolution of

stationary waves u(e) modulations has the form (16]:

OlCt(!) - /dIx(k) = 0, Ok/Ot + OW/Ox = 0, (14)

1 2%
where L(k,W,m) = - f Lo dx

21 0

is the averaged Lagrangian (for soliton the integration
limits must be changed for -o and +0 ), indexes denote
partial derivatives on corresponding variables. To close the
set (14) it needs to append the dispersion relation (12),then
we have complete system of equations on 3 parameters k(x,t),
W(x,t), m(xt)

The stability of stationary solutions one can judge from
the type of modulation equations (14). Namely, if the type of
the set (14) is hyperbolic, then the perturbations of initial
wave are finite on time, but if the type of set (14) is
elliptic, the perturbations grow exponentially. The type of
modulation equations is determined by the sign of
disoriminant:

D = V2 - pq , (15)

where
2 2

At D < 0 the set (14) is hyperbolic, at D > 0 one is elliptic.
Now let us study the stability of periodic waves

(11a,b), whose averaged Lagrangian has the form:

L(.,km) = (w2 - k2 ).f 1 + a k4 .f 2  (16)
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where a = (2/%) 2/3 , functions f, and f 2 for RW and OW are

respectively equal to:

fl a f 1 (m) = E,
((17a)

f2 (iN)f = ( (2 -inE 1 2)K ]K3

fl a f1() = (E - m' 2 K)K ,

f2a f 2 (im) = [ (2m2 - 1)E + m, P(1 - 3m2)K K3. (17b)

Here E r E(m) is the complete elliptic integral of the second

kind, m' 2 = I - m2 . Then using the Lagranian (16) one can
show, that the waves (11a,b) are stable under a condition:

A(m) - B(m)k 2 > 0 , (18)

where

A(m) = fl 2 
- 6(f 1 )f 1 f 3 /(f 3 )' + 4(f 1 ) f 2 /(f 3 ) , (19)

B(m) = 6a( flf2 + 2(f 1 ) f 3 ( f2 - 2f f3)/(f3) .

( )' r (d/dm) and function f 3  is defined for each waves

respectively:

(2 - m2 )K2  (20a)

f3 a f3(m) (2m2 - I)K2 (20b)

Using the condition (18) one can check the stability of
periodic waves (11a,b) for each set of parameters w, k, m. On
Fig.2 the plot m versus k is presented. Curve I determine the
boundary of region of waves existence, curve 2 is the
boundary of stability region (section-lined area). As seen,
under the given mn for RW the shorter wave lengths are stable
(Fig.2a), for OW the longer ones are stable (Fig.2b).

For the mBq soliton (11o) we obtain, that D = 0 , i.e.
the set (14) is parabolically degenerate. Thus the Whitham

2 M 1 2

0 k 0.8 0 k 3

Figure 2. The existence and stable regions for a)RW and b)OW.
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method does not give an information on the mBq soliton
stability. However in [17] it has been investigated the
stability condition for the solitary solutions of wide class
of equations, whose special case is the equation (10). This
condition has the form:

I~y2) + 2v2 d (v 2) < 0 , I(v2 )= (u.)2 dx. (21)
I~v (v2 )I

Using this criterion we have found, that mBq soliton is

stable at v > (1/2)1 /2. Thus the fast solitons are stable,
that coincides with a result for Bq equation.

It is interesting to note the following peculiarity. One
can see that both the RW, which is the sequence of kinks and
the OW, which is the sequence of kink-antikink pairs,
transform to the soliton (11) at m = 1. For this the

threshold wave velocity vth = Wth/kth - (1/2)1/2 .But for

RW the stability region is determined by the condition v >
vth whereas for OW one is v < vth. This fact can be

apparently explained by the difference of a topological
properties of solutions (lla,b).

In conclusion it is necessary note that at a
simultaneous account of highest gradient terms and external
magnetic fields the NLC dynamics can be reduced to other
exactly integrated model, which is the combination of SG and
mKdV equations [18].
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ABSTRACT

A model of efficient energy transfer in Langmuir-Blodgett monolayers involving
direct exciton capture on bound states of an acceptor molecule is studied numerically and
analytically. It is shown that the capture mechanism survives thermal fluctuations affecting
the coupling constant up to magnitudes corresponding to lattice melting and into the fluid
state. A theoretical explanation is outlined.

1. INTRODUCTION

Nearly lossless transfer of energy over distances of up to 100 nm was experimentally
discovered by Kuhn 1,2 and Mbbius 3 in a type of Langmuir-Blodgett monolayers4 usually
called J-aggregates. A J-aggregate is a monolayer, a micelle or a vesicle formed as a
functional unit acting as an entity in a purposeful manner.1 Structurally, it is a compact and
regular arrangement of chromophores attached to hydrophobic carbon tails. The interstices
between the carbon tails are filled with molecules (e.g. octadecane) which make the layer
rigid and compact. Using LB techniques, Kuhn 1 has prepared J-aggregates in which as
little as one in 10,000 molecules of chromophore was an acceptor, the rest being donors.
In such structures, it was discovered1 that, when irradiated with ultraviolet or visible light,
donor fluorescence was strongly quenched. Simultaneously, an acceptor fluorescence line
appeared, which was somewhat red shifted. It thus appears that the monolayer acts as a
cooperative molecular array which, after absorbing a photon, channels the energy laterally
over exceptionally long distances to a particular energy-accepting molecule. The effect has
not been observed in aggregates where the molecular "filler" is absent and whose structure
is less rigid and less ordered.

Thus, excited J-aggregates can be viewed as a large array of coupled quantum
oscillators. A different (guest) molecule characterized by a resonance frequency slightly
lower than the host molecule's would therefore act as an energy trap once it is incorporated
into the lattice. In addition to energy trapping by the guest molecules in the J-aggregate
there exists the possibility of electron transfer from the excited host molecule to a guest
molecule resulting in a quenching of the J-aggregate's fluorescence.
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Studies of energy transfer in photosynthetic and biological systems such as
chlorophyll indicate 5 that: (a) lattice models are usually closer to reality than random
arrangements, (b) transport is best described as hopping, and (c) exciton trapping on a
small fraction (typically 1%) of photochemical reaction centers is not diffusion limited.

There exists a vast body of literature concerned with the question of exciton transport
and trapping in molecular crystals and biological molecular aggregates. Since these
systems bear a relationship with J-aggregates, we first give a brief overview of the most
important results known to date which will serve as guidelines for the development of our
models.

The main dividing line in the study of excitons is whether they are localized
(incoherent) or delocalized (coherent). It is believed 6 that exciton migration in the absence

of phonons occurs coherently at first with <x2> c t2, where x denotes position and t time.
Later in time the process becomes incoherent and satisfies the relationship <x2> - t typical
for diffusion. The two regimes leave their imprint on the absorption lines. Lorentzian
character of the absorption lines is due to coherent behavior while Gaussian forms arise due
to incoherent motion. The former is highly temperature dependent and occurs with weak
exciton-phonon coupling, the latter takes place when exciton-phonon coupling is strong.
In general, therefore, one should expect an intermediate regime where both localized and
delocalized excitons participate in energy transfer.6 .7.8 The problem is rather complex and
the presence of traps makes it even more complicated. Our approach should explore the
many possible modes of behavior that exist and discuss the physical manifestations of each
of them.

In fact, a recent paper 9 lists the following six pathways to energy relaxation in LB
monolayers with dye molecules present: (i) monomer fluorescence, (ii) aggregate
fluorescence, (iii) energy trapping, (iv) energy migration between donors, (v) excimer
formation, and (vi) energy migration to lower energy sites and trapping there. The various
processes are manifested by inhomogeneous broadening of phosphorescence spectra.

II. THE QUANTUM MODEL

The molecules that we are concerned with are chromophores, i.e. they have a
delocalized electron which can be excited by light to a higher energy level above the ground
state with 0 denoting the energy difference. Note that throughout this paper we have used
units with fi = 1. We model this system by an oscillator with an appropriate energy
spacing. In addition, the close packing of chromophores induces a strong electron-electron
interaction (of dipole-dipole type) with resonant energy J. The parameters (I and J are
difficult to calculate ab initio from theory but, fortunately, we can estimate them from the
monomer and dimer experimental spectra. We have then the following Hamiltonian typical
for the molecular exciton model in a dimer6

H2 = 0 (AIAI + A+A2) - J (A+A2 + AA) (1)

where the operators A+, Ac (ct = 1,2) refer to a creation and destruction of a quantum of

excitonic energy at site a, respectively. Hence, the eigenvalues E are found as E = fl±J.

Using the data for oxycyanine yields: 0 = 3.125 eV for a monomer, E = 3.261 eV for a
dimer, and, consequently, the coupling constant J is calculated as J = 0.136 eV. These
data will be used for modeling of monolayer assemblies composed of both donor and
acceptor molecules. Note that a typical transit time6 between two sites of a molecular dimer
is on the order of 10-14 s, i.e. much too short to account for the observed migration and
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transport effects in i-aggregates. To properly simulate exciton kinetics we require lattice
models.

Since the bricklayer structure appears highly anisotropic with substantial elongation
along the x-axis, it seems appropriate to study a one-dimensional approximation to the
problem as a first step towards understanding cooperative behavior. The model
Hamiltonian is composed of two parts:

ID ID ID (2)H = Ho + H" ,

where the donor molecules are accounted for through
ID+

HG A ' (A- (3)

and the acceptor contribution is
HID =_ V Aý Ao + (}.- J) (A+ (A, + A-,) + A, (A+, + A+) (4)

Taking the eigenfunction in the form of a linear superposition of excitations

IV = Z anA . IQ•> (5)
4-

yields a very important relation between the binding energy z and the decay rate of the wave

function

(z -O) =-J(p + 14L) , (6)

where we have used: an = j.rn. In order to have the wave function centered around the

acceptor and extending over many sites it is required that [t be close to 1. Introducing
dimensionless quantities: w = V/J and y = Jo/J, it can be shown that the eigenvalue'problem
yields

9, {w+(w2 4+8Y2)1/2) (7)
2(1 - 2y )

It is easily seen that with y small we need w 2. Then, taking w = 2 an optimal case is

found for y << l as R = I - J ¥y.

Numerical simulations of the time-dependent Schrbdiinger equation for the chain
Hamiltonian of eq. (2) were recently performed which involved solving coupled differential
equations.10,11 The numerical simulation was performed1 Il for the chain of 1000 molecules.
In these simulations the acceptor was placed in the middle of the string of molecules. The
initial condition assumed the same probability of excitation for each particle. This situation
corresponds to the irradiation of the molecular assembly by a short laser pulse. It can then
be seen that the acceptor causes the probability distribution an(t) to evolve in time,
especially at locations in its immediate vicinity. In general, the probability amplitude at a
given site tends to oscillate with the exception of the acceptor site itself where the excitation
,robability increases. In general, no case led to the observation of a large probability of

excitation at the acceptor site (Fig. 1). However, for the optimal choice of parameters the
situation changes dramatically (Fig. 2). The probability at the acceptor site attains very
large values at the cost of the neighboring sites, whose excitation probabilities decrease. In
other words, the acceptor absorbs the probability amplitude from the neighboring sites.
Furthermore, the probability of excitation at the acceptor site increases to large values
before the disturbance has propagated over a long distance, i.e. the process is very fast.
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Fig. I Time evolution of the excitation probability for non-optimal parameters w=5, y=l, shown in

steps from t=l to t=10. A string of 1000 molecules, with the acceptor located at molecule
number 500. was used.
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Fig. 2. Time evolution of the excitation probability for a near-optimal set of parameters: w=2, y=0. 1.

The same setting as in Fig. 1 has been used.
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Il1. THERMAL FLUCTUATIONS

A natural question that arises in this context is the stability of the phenomenon with
respect to positional disorder. The fluctuations of the molecular site distances (denoted by
d) can be readily related to the changes of coupling constant J, since J - d-6 (due to dipole-
dipole interactions of excited electrons). We can replace J by J ± AJ with AJ being a
random probabilistic variable. The first calculation we carried out was to estimate the
typical size of Ad/d for the Debye model of acoustic phonons as applied to the assumed
brick layer lattice 12 of a J-aggregate. In the harmonic approximation the Hamiltonian is
given by

-Zdmk [1+18
H XJ (2m q(k) -+ ak]ak , (8)

f= (2x)m

where k labels normal modes, i denotes branches of acoustic phonons, m is the lattice
dimensionality, the frequency is -: k(W/M)1/2 with M being the monomer's mass and W
its stiffness constant. To calculate thermal averages we denote d = Un+1 - un to represent
the relative displacement and we find that in 2-D and in the high-temperature limit

<d2> = (4x2)"' J, d2ki (Mwk,)'(1-cos ki)<a ak,+aka•>=-(4rfh 2!MkBoD)(T/ID), (9)
i=1,2f

where 0 D denotes the Debye temperature. 13 Assuming that the unit monomer (oxycyanine)
contains 20 carbon atoms we find M - 4.10-25 kg. Taking a low estimate of the Debye

temperature as GD = 300 K, we obtain at a room temperature limit V _ 0.1 A as
compared with the typical lattice separation of 16 A. Note also that in the crystal phase the
temperature dependence of the fluctuations in the coupling constant J will be: AJ/J oc T1/2,
with a maximum value of the relative fluctuation at approximately 0.04.

At higher temperatures, but certainly below the room temperature range, the aggregate
will experience a substantial softening of the lattice and eventually become a two-
dimensional anisotropic fluid. This results from a weakening of the harmonic terms in the
Hamiltonian and a simultaneous development of strong anharmonicities. To describe this
cross-over region between a two-dimensional crystal and a liquid we adopt a semi-classical
picture with a Landau-Ginzburg Hamiltonian of the type 14

HL( =- d2x [A2p2 + A4 p4 + D (Vp) 2] , (10)

where p desci "s a local mass density and D is a Ginzburg inhomogeneity parameter. As
we approach the melting temperature T --* Tm, A2 -' 0 linearly with T. In order to
properly describe this regime we adopt the following procedure: (i) Fourier transform p
into k-space, (ii) rewrite HLG accordingly, and (iii) approximate HLG by including only
paired-up modes in the interaction part (i.e. k and -k components). Thus,

HLr ---k< (A2 + DO) PkP2+6A A41Pk• , (1I)

k<AA
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where A is the cross-sectional area of the system and A is the cutoff such that A = 2A/d.
Using a recently developed non-Gaussian method1 5 of treating fluctuations for strongly
anharmonic systems we find that close to Tm

<IPk P> - CXP[( & )1 D k2] (12)

Since at temperatures T close to the critical point Tm the long wavelengths dominate and the

2 A2first mode to soften at T is: k=- where A2 = a(T - Tm). Thus, using eq. (12) and the

above we obtain

<IPk12> - exp +(k1-- / A2  
(13)

This means that density fluctuations grow exponentially up to their maximum value as the
0

density approaches Pc at T = Tm. This is approximated according to

______ '>0 [T- Tm']'
0 = exp a (T )J (14)

Pc

with a = r7- on approaching Tm from below.
2 ' kB A4

Above the melting temperature we expect a typical behavior for liquids where
fluctuations, over a broad range of temperatures below boiling are virtually independent of
temperature. Based on the structure factor S(q) for typical three-dimensional liquids16 it

* .f~2> 0.5A
can be surmised that* 2 0.]

d -0w-" Hence, it translates into AJ/J - 0.10.

To summarize this theoretical part we expect 3 regimes to occur: (i) the crystal phase
(low temperatures) with AJ/J - FT-, (ii) the melting region (intermediate temperatures)
with AJ/J - exp[ci(T - Tm)/IT] , and (iii) the liquid phase where AJ/J = constT. We then
proceed to perform numerical experiments intended to examine the influence of fluctuations
in J on the quantum capture process by an acceptor. The numerical findings are quite
remarkable and are illustrated in Fig. 3. What appears to occur is that the quantum capture
mechanism persists up to the value of Al/J - 0.1 which corresponds to a two-dimensional
liquid regime as seen in Fig. 4. Moreover, as can be seen in Fig. 3, it is crucial that the
random noise generated through fluctuations AJ does not destroy the main feature of the
system, i.e. the existence of a shallow bound state on the acceptor.1 0 The failure to satisfy
this requirement would either cause the level to be too deep and as a result the fine tuning
required for capture disappears or the acceptor state becomes too shallow leading to
scattering but no binding. However, we must emphasize the surprising property of
resilience of the quantum capture mechanism against very large structural fluctuations
(beyond their thermal value for a crystal lattice).

0 Based on experimental surface pressure-area isotherms in Ref.l, we estimate the mean intermonomer
distance to increase to approximately 30A in the fluid like phase.
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In fact, a simple explanation of this behavior can be deduced from perturbation
theory. Taking the fluctuations in eq. (2) as the perturbation

AV= AJ,1 A* (A.., + A.+,) , (15)
ft

where Wn represents the white noise with variance ao, the first order energy shift is

AE = <4o AVI #o> (16)

This can be easily evaluated since the wave function is simply: '#(n) = zP where 0<z<l.
Outside the acceptor, and shallow bound states, z is very close to I. Then,

AE= (1- z2) I AJn Z2n (17)
ft

Hence,

E, z2 =0 (18)

where N (1 - z2)-l is the spatial extent of the wave function. We, therefore, come to the
seemingly paradoxical conclusion that the shallower the bound state and the longer its
extent, the smaller is the effect of fluctuations. Therefore, we have demonstrated both
numerically and analytically that the quantum capture by a shallow bound state, as
postulated in refs. 10-11, is remarkably stable against random disorder of liquid-type. This
fact has obvious biological implications; for example in the understanding of cellular
membranes.

IV. DISCUSSION

Capture of exciton energy by impurity molecules (traps) depends critically on whether
the excitons are coherent or incoherent. In both of these cases the temperature dependence
of the energy transfer is different. For deep trap levels the probability of coherent exciton
capture is largely temperature independent up to high temperatures where it is proportional
to exp(-AEkT) with AE denoting activation energy. For shallow energy traps (as is
believed to be the case with J-aggregates), if the trap depth is much less than the Debye
energy, then one acoustic phonon is sufficient to capture an exciton on an impurity. 7

Otherwise, exciton capture is a multiphonon process. As a consequence one finds that at
low temperatures (compared to trap depth energy) the capture cross-section is proportional
to T1 2, while at high temperatures it is proportional to T5/2. Then the probability of
capture shows a cross-over from a nearby constant value at low temperatures to that
proportional to T3 at high temperatures. This temperature dependence is not compatible
with the one found experimentally,12,17 where the efficiency of energy transfer was
estimated to be proportional to T between 20 and 300 K, which agrees better with the
incoherent exciton mechanism. On the other hand, for shallow energy traps it was found 18

that coherent excitons are more likely to be captured. The quenching rate of coherent
excitons by isolated impurities is proportional to the cubic power of their concentration. 8

In order to resolve this discrepancy M6bius and Kuhn 12 .17 proposed a finite-size domain
of coherent excitations whose size increases with the coupling constant but decreases with
T- due to thermal fluctuations. They found the lifetime of excitons to be proportional to
T-1/2 which is consistent with a coherent exciton model. This intermediate picture has been
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recently simulated numerically 19 and an empirical relationship was found that gives the size
of the coherence domain as: Neff = 3000/T(K). The inclusion of acoustic and optical
phonons may reduce Neff to 1 at room temperature.

The mechanism proposed by us is not inconsistent with the postulate about the
domains of exciton coherence. The range of the possible capture distance is determined by
the properties of the acceptor and donor molecules. In agreement with our finding it was
observed7 that incoherent excitons with the inclusion of phonons, are characterized by an
effective radius Ro for capture by a trap, which typically exceeds 10 lattice periods. The
quenching rate is proportional to the square of the concentration of impurities. The transfer
probability for exciton migration depends inversely on the sixth power of the distance
between sites and, at low temperatures is proportional to the absolute temperature i.e. is
thermally activated. This is consistent with experimental observations 20 for molecular
crystals such as naphtalene, where the efficiency of energy transfer is proportional to T for
low concentrations of acceptor molecules (104 to 10-2). A possible explanation of that is a
combined kinetic and diffusion model-thermal fluctuations as well as phonons assist in
hopping. It seems that the process of quantum energy capture in !-aggregates is a complex
one and various mechanisms contribute differently at different temperature regimes. It is
most likely that both coherent and incoherent excitons are at play over a broad temperature
ranges and impurity concentration values. Further investigations are necessary to provide a
complete theory of phenomenon.
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INTRODUCTION

The change in the anisotropic optical properties of a crystal under light irradiation,
i.e. photoinduced optical anisotropy (POA), has been the subject of investigations for
a long period1 . Recently POA in Langmuir-Blodgett (LB) films after irradiation was
recorded2 . In the layer plane (plane XOY) these films are optically isotropic. However,
after the action produced by a linearly polarized light propagating along the OZ axis
with a frequency within the absorption region of the substance, the films became biaxial.

This paper aims to clarify the nature of the POA of layered molecular systems. It
is shown that changes in the energy of the orientation interaction between molecules in
the excited state with respect to the ground state cause their rearragement in the lay-
er. Intermolecular orientational interaction provides a coherent and cooperative soliton
character of rearrangement.

ORIENTATION ORDER IN THE LAYER

We assume that the centres of molecules form a square lattice. The energy of
molecular orientational ordering per unit area has the form

F=Il(V) 2 
- -Acos44(r-) (1)

where V(r-) is the angle formed by the large molecule axis and the X axis, I and A are
positive energy constants. We will discuss the orientational distribution that character-
ized by fotirth-order symmetry axis (optical isotropic distribution). Such a distribution
may arise near orientational defects. For example, in LB films these defects may be
created by the molecules whose aliphatic end is directed to the hydrophilic side. In this
case a boundary condition

fV4(rI-- 0 = 0 (2)

Future Directions of Nonlinear Dynamics in Physical and Biological Systems
Edited by PJ1. Christiansen et a., Plenum Press, New York, 1993 391



takes place (F = 0 is the defect position). The simplest example of such a distribution
is

sinh ay 2 2A
•o=-arctan - , a = (3)

sinh ax T '(3
It is seen that this vortex-like structure may be regarded as an intersection of two
mutually perpendicular M-kinks situated on the lines y = ±x.

The optical anisotropy is characterized by the quantity

K .- I f dFfcos 2W(r) (4)rl., + KYV S

where •(v) is the film absorption coefficient of the light polarized along the X(Y)
axis, S is the area of the incident beam. Inserting (3) into (4) we see that q = 0 in
this case.

When a molecular laser is irradiated by polarized light E(F, t) = Z cos(OF- wt) (W
is the electronic eigenfrequency of the laser) some molecules occur excited and in the
orientational energy there are terms that depend on the number of excited molecules,

1nt= -- A o
2in ýA.P cos 2cp(r-)

where A.x - (Pex - Pgr)2 ( yex (pjr) is the molecular dipole moment in the excited
(ground) state), P(-) is the probability for finding the r th molecule in the excited
state. The order in the irradiated layer can be described by the equations':

IV 2,o(r) - (A - A,,P(i) sin 4o(r) = 0 (5)

P(F) = P cos2 (W(r) -_p) (6)

where P = (Ed)2 (d is the transition dipole moment, r(,) is the transversal (longitudi-r(-Y)
nal) relaxation rate of the excited state). If in the absence of radiation, the orientation
order is determined by the function (3) then as follows from Eqns (5) and (6), in the
vicinity of the vortex centre we can write approxinately

V = -0- I w (ap)2 ln(ap) sin 2(0 - I) (ap < 1) (7)

where x = p cos 0, y = p sin 0, w = -A p. Far from the vortex centre

1 < (sh 2ax + sh 2ay) < R, (8)

where In R, = -2(6w)-3 ln(6w) (w < 1), the orientation order is described by the
function

p=o - 4 (6w)T[(sh~ax + sh2ay)(6w)l - 11 sin 2Vo cos 2%P (9)

At x, y --+ oo the steady state (3) is unstable and one can show3 that the walls y = ±x
move with a linear velocity v = -5W cos2I (the parameter A characterizes the

24A
dissipation process in the orientation system).

It is worth noting that the walls can move freely in the continuum approximation
only. Taking into account the discreteness of the lattice, one can show that the solitons
move in some periodic potential profile4. Consequently the molecular system rearranges
under the action of the light if the condition

w> (aa)2 exp[-ir(aa)-'1] (10)
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holds ( a is the lattice constant). Here the right hand side is the dimensionless height of
the potential barrier. We see from (10) that the walls with the width a-' = (2/3) a can
move in the LB film with A.. -" A under the action of the light creating N,. = 10-IN
excitations in the layer (N is the total number of molecules in the layer).

Inserting (7) and (9) in (4) we obtain that the optical anisotropy coefficient of the
irradiated film can be written as follows

V 2 exp[(6w)iaR] - (6w)31 aR - 1q = (6w)-l
2 ~(aR)2

where R (R -c Rj) is the mean distance between defects in the film.
If R > R, there are parts of walls that move nearly freely. In this case the optical

aniscotropy coefficient increases in time with a velocity 1 , tanh aR.
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INTRODUCTION

Materials displaying nonlinear optical (NLO) effects are attracting increasing in-
terest because of their potential applications in devices for processing optical informa-
tion in optical communication systems 1-2. Many organic materials have been shown
to possess very large nonlinearities which can be attributed to the highly polarisable
7r-electrons3 . A large molecular hyperpolarizability, 03, responsible for second-order
effects can be achieved in the charge asymmetric donor-acceptor molecules. Howev-
er, to achieve large bulk second-order effects it is necessary to arrange the individual
molecules in a noncentrosymmetric structure in order to avoid cancellation of the indi-
vidual molecular nonlinearities.

A technique suited to construct artificial super-molecular arrays without inversion
symmetry is the Langmuir-Blodgett (LB) deposition technique4 . This is a molecu-
lar assembly technique where successive close-packed ordered insoluble monolayers of
amphiphilic molecules (i.e. they consist of a hydrophobic and a hydrophilic part) are
transferred from a water-air interface onto a solid substrate by repeatedly move the
substrate vertically down and up through the monolayer. By derivatising highly NLO
molecules with long hydrocarbon chains they may be candidates for LB film forma-
tion. The high degree of orientational order in LB films makes them suitable for optical
second-order nonlinear processess like second harmonic generation (SHG). Furthermore,
because of their welldefined thickness they are well qualified as waveguides if scattering
lossess can be overcomeds.

In the present paper we evaluate the NLO properties of two different types of LB
films by use of SHG measurements. One type ci film is made of N-docosyl-4-nitroaniline
(DCpNA)6 where the nonlinear chromophore (4-nitroaniline, pNA) is a intramolecular
donor-acceptor system. While another type represents a new approach where a layer
of donor-molecules, {7-(N-octa-dodecylaminomethyl)-8-16-dioxadibenzo(f,g]perylene},
is alternated with a layer of acceptor-molecules, {2-octadecylthio-1,4-benzoquinone}
such that a close contact between the donor- and acceptor moietie is obtained, and
they thereby form an intermolecular donor-acceptor interface7 .
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OPTICAL SECOND HARMONIC GENERATION

The NLO properties of the films were probed by second harmonic generation (SHG)
measurements. The experimental setup is shown in figure 1. The la:..r is a 1000 pps
Q-switched Nd:YAG laser operating at 1064 nm with a pulse duration of 140 nsec and
an energy of less than 1 mJ. After passing through several filters and polarizing optics
the fundamental beam was weakly focused on the sample. The polarization could be
rotated by a A/2-plate. After suitable filte-ing (a combination of an IR-filter and a
monochromater) the beam from the SHG (at 532 nm) was detected in a transmission
geometry by a photomultiplier in connection with a photoncounter.

HP/P F 1Sample F2 R?

INd:YAG laser[. {
P LI c L2 P2 [ýM

Figure 1: The experimental setup used for the SHG measurements on LB films. PI and P2
are polarizers for 1064 nm and 532 nm, respectively. Li and L2 are lenses, F2 and F3 are
IR-blocking filters and F1 is a IR-pass filter. HWP is a halfwave plate.

In the following we consider the ultrathin LB film (with a few layers) as a 2-
dimensional nonlinear polarization sheet on a linear substrate. The nonlinear polariza-
tion P(2w) responsible for the SHG is related to the incident electric field E(w) via a
third rank susceptibility tensor X(2), as

Pj(2w) = X(2)Ej(w)Ek(W),(1

where i•j,k denote vector components with respect to the x,y,z coordinate system with
xy in the plane of the film and z parallel with the surface normal. The different
nonvanishing tensor components of X(2) can be assessed by measuril, the SIHG for
different combinations of polarizations and angle of incidence, 0. We consider a linearly
polarized incomming laser beam polarized at an angle -t with respect to the plane of
incidence (the xz-plane). At normal incidence (i.e. E,(w) = 0) the SHG polarized in
the x-direction is given by

IA(•) I A (2) EwEw X (2) + - E- +(2) EY'E' 12

A IX(2) cos 2 .t + X(2) sin 20 + X(2) sin2 0 12 (Ew)4, (2)

and there is made no assumptions regarding the symmetry of the film.
In figure 1 we have shown the SHG as a function of the incident polarization angle,

*, from a bilayer sample of DCpNA oriented such that the dipping-axis is parallel with
the x-axis. In the nonlinear chromophore of DCpNA the molecular hyperpolarizability
f9 is dominated by a single component along the charge-transfer axis (C), i.e. that

= /CCC. The nonlinear susceptibility is then related to #3 through the following
equation

X(2) = N.f~f2 ,((z)(,C)(kC))I3, (3)
Xijk(3

where N, is the surface density of molecules, f, and f2, are local field factors. The
brackets denote an averaging over molecular orientations. From Eq. 3 the following
relations are obtained
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.(') = N2.f2 ,,(sin3 p) (cos 0) p

X(') = N.f.2f2.(sin3 ik)(cos sin 2 •)# (4)

-x = N.,2f2,, (sin3 t)(cos2 •,sin 0)/3,

where 0 is the polar angle between the molecular axis C and the suface normal, and 0 is
the azimuthal angle. A strong anisotropy with the nonlinear chromophores oriented in

the dipping direction is responsible for the large XWr-component. The almost negligible

Xl)-component is due to a nearly symmetric arrangement with respect to the dipping-
axis. However, films of DCpNA loose their ability to generate second harmonic which
probably is due to reorientation of the chromophores into a centrosymmetric structure.

--k 20C..... ..................A J Normail Incaidnce.

S15 B)

C

S 10

.21
I 2Aw

a

-90 -45 0 45 90 135 180 225 270
Incident Polarization Angle. 4 Y

Figure 2: A) The second harmonic intensity I.2- (0). Symbols represent experimental points

and the solid line shows the theoretical fit using Eq. 2, with the following ratios between tensor
components X(=) XXX= -- 0.307 and x(=i)/XXX -- 0.056. B) This shows the experimental
configuration used.

The alternated donor acceptor films exhibit isotropy around the surface normal(2)
which reduces the X(2) to only two nonzero independent components, namely Xzz and
X(2) ZX(2) = ( (2) where also Kleinman symmetry is assumed. The p-polarized

SHG is given by

U () IF .. X,(2) zE- E ' + F') + (2) (2) ' + 2

=x[( F )"x,+F.. . +x" 2.)] cos2 4 + F sin I (Ew) 4

S *a. cos2 2 + b. sin2 2 (E-)4, (5)

where the factors Fijk are geometry dependent and contains both the linear and non-
linear Fresnel factors. From the ratio

a F . . - 2 F . . + _ F ..2  .,( )
b F ~rn F n - (XZfl Xz==z

we can calculate the ratio between the two tensor components.
In figure 3 we have shown the rotation pattern at an angle of incidence equal to

45O. The fit with Eq. 5 gives a/b= -13.93 from this we calculate XZA/XlX( -74.41.
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Figure 3: A) The second harmonic intensity I2'° (0). Symbols are experimental points and
the solid fine shows the theoretical fit using Eq. 5, with a/b = -13.93. B) This shows the
experimental configuration used.

This shows that the major nonlinear component is perpendicular to the film plane as
could be expected because of the intermolecular donor-acceptor interface.

CONCLUSION

SHG has been used to evaluate the nonlinear properties of two different types of
LB films. An anisotropic structure was observed for the intramolecular donor-acceptor
type film of DCpNA. Also a considerably nonlinearity was obtained in an intermolecular
donor-acceptor type of film. This might open for new types of super-molecular arrays
for nonlinear optical waveguides.
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NONLINEAR ENVELOPE WAVES IN INHOMOGENEOUS MEDIA
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In a number of physical problems, one deals with evolution

of envelopes of high-frequency waves in inhomogeneous nonlinear

media (see Ref. I and references therein). Of special interest

is the situation when the wave is passing from a focussing do-

main into a defocussing one, or vice versa. For instance, the

envelope solitons cannot exist in the defossing medium, hence

they must decay when entering it from the focussing domain.

This effect has been recently analyzed in detail. 1 Here I will

conce::trate on the case when a continuous wave (cw) is traveling

from the defocussing domain, where it is stable, into the focus-

sing one, where it is subject to the modulational instability

(MI). The analysis will be developed in terms of the well-known

model of an inhomogeneous nonlinear optical fiber based on the

following modified nonlinear Schrddinger (NS) equation: 2

iuz + la(z)u + lul 2 u + ibutt = 0 (1)

wri-tten in the standard notation, a(z) being the spatially inho-

mogeneous dispersion coefficient. The last term with real b takes

account of the higher dispersion, which is, generally speaking,

necessary near the point where a(z) vanishes. The exact cw solut-

ion to Eq. (1) is

u (tz) = Q1/2 exp(i k(z)dz - igt) , (2)

where Q0 is the power of the wave, and the local wave number is
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k(z) !a - a(z)g 2  + QO - b8 3  (3)

To analyze the stability of this solution, the disturbed wave

is taken in the form

u(t,z) 1 Q1/2(1 + n(t,z)) exp(i Sk(z)dz - igt +

if(t,z)). (4)

The amplitude and phase disturbances n(t,z) and f(t,z) are re-

presented as follows:

n(t,z) = Q1/2N(z) exp(-iGt - igG •a(z)dz - ibg 3 z -

2

3ibg 2Gz), (5a)

f(t,z) = F(z) exp(-iGt - igG La(z)dz - ibg z -

2v

3ibg 2Gz), (5b)

to arrive at the following equations for N(t,z) and F(t,z):

dN =1 2a(z)G2F + 3bgG2F, (6a)

dF = _ 1 a(z)G2N + 2QON - 3bgG2 N (6b)

In what follows, the fundamental assumption will be adopted: a

characteristic length at which the coefficient a(z) varies is

much larger than a characteristic scale of variation of the

functions N(z) and F(z). In this case, a solution to Eqs. (6)

can be looked for in the quasi-stationary approximation as fol-

lows:

N(z) = No(z) exp( s(z)dz) F(z) Fo(z) X

exp( s(z)dz), (7)

s(z), N0 (z), and F0 (z) being slowly varying functions. Insertion

of Eqs. (7) into Eqs. (6) yields the instability gain s(z) in the

the approximate form:
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s(G,z) - G(( 1 a(z) + 3bg)(2Q0 -(Ja(z) + 3bg)G 2 ) 1 / 2 , (8)
2

where G is assumed positive.

If the dispersion coefficient changes its sign at the point

z = 0, it is natural to assume the linear dependence

a(z) = a'z . (9)

The exponential amplification of the small disturbances is de-

termined by the integral gain

z

S(G,z) 5 Re(s(z'))dz' . (10)

Inserting Eq. (9) into Eq. (8), one notes that the integrand

is different from zero in the interval

0 < z' + 6bg/a' - 4Q/a'G 2
. (11)

When z exceeds the value zmax(G) = 4Qola'G 2 
- 6bg/a' (see Eq.

(11)), S(G,z) saturates as the function of z and attains the

value

S(G) = I Q0/a'G 2 . (12)

If one regards S(G,z) as a function of G at fixed z, it takes

the maximum value

Smax (z) = S(G max(z)) = (XQ0/2)(z + 6bg/a'), (13)

Gmax 2b-I Q/(z + 6bg/a'). (14)

At G 4 0, S vanishes ^ G, and it is identically equal to

zero at

G2 > 4b-Qo/(z + 6bga') = 2G ax(z), (15)

see Eqs. (11) and (14).
At the nonlinear stage of development of the MI, compet-

ition of the disturbances with different frequencies G takes

place. In the optical fibers, the initial disturbances may

be produced by quantum fluctuations. A relevant problem is

to find a frequency selected by the nonlinear competition.

Let us assume that the initial disturbances are Gaussian, i.e.,
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their powers Po(G) do not depend on the frequency G. It is nat-

ural to define the winner of the nonlinear competition as the

frequency for which the modulation depth attains first the full

power of the underlying cw. With the logarithmic accuracy, the
corresponding integral gain is S = !in(QO/P0) (recall P is

the initial power of the diturbance). Equating this expression

to that (13), one finds the shortest length z at which the full

depth of the modulation is attained:

z + 6bg/a' = (2CQo)- 1 ln(Q0 /P 0 ) (16)

Then, making use of eq. (14), one finds the corresponding freq-

uency:

G2 = 29r(a')-1 Q2/ln(Qo/P 0 ) . (17)

The analysis developed is valid provided that, as it was pre-
sumed above, the length given by Eq. (16) is much larger than

the characteristic spatial scale of the MI, which is - s
-1I -1/2 -1/2

G-Qo (a'z + 6bg) according to Eq. (8). With regard to Eqs.

(16) and (17), this condition takes the form

In 2 (Qo/P 0)>» 2/2 . (18)

Thus, the cw power Q0 must be sufficiently large as compared to

the power P0 of the initial disturbances, but the relation betw-

een the parameters Q0 and b may be arbitrary.
4

Earlier, it was proposed to superimpose a specially generated

disturbance with a given frequency G on the cw in order to cont-

rol the development of the MI. The resuls set forth here suggest

another way to achieve the same purpose: One can adjust the grad-

ient a' of the dispersion coefficient to select the necessary

value of G. In practice, one can produce the expedient gradient,

employing the carrying frequency of the cw close to the zero-dis-

pesrion point and imposing, e.g., a temperature gradient or mech-

anical stress on the fiber.

Let us now give some estimates concerning the realizability

of this mechanism in real nonlinear fibers. Taking the cw power

200 W and the typical value of the nonlinearity parameter (which

did not appear in the notation adopted) 0.015 W -/m for a silica

fiber, one obtains the MI length #i 0.3 m. Thus, it is suffici-

ent to have the inhomogeneous segment of the fiber few meters
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long. The mechanism considered can also be realized in terms

of stationary light beams in nonlinear planar light guides, and

in a number of other inhomogeneous nonlinear systems.

In conclusion, it is relevant to note that a similar effect

may take place in a bimodal optical fiber. In this case, the

fiber can be itself pretty homogeneous, while the effective in-

homogeneity is induced by the energy transfer between the two

modes. It is assumed that the intermode coupling is generated

by the stimulated Raman scattering, the pump wave belonging to

the normal-dispersion spectral region, while the Stokes wave

lying in the region of the anomalous dispersion. The bimodal MI

sets in when the ratio of the powers of the two waves passes

through a certain critical value. This problem can also be anal-

yzed in the quasi-stationary approximation. The final result,

to be presented in a detailed form elsewhere, is that the bimo-

dal instability splits the original cw into a chain of solitons

with the peak power W " QoA 3 / 2 CE. ln(Q 0 /P ))- , where Q and

P0 are, as above, the powers of the cw and initial disturbances,

A is the ratio of the dispersion coefficients in the modes with

the anomalous and normal dispersion, and E the coefficient of

the energy exchange between the modes via the stimulated Raman

scattering (to obtain this estimate, it was assumed that all the

cw energy was transformed into solitons, and one soliton was ge-

nerated per one period of the growing modulational disturbance).

Thus, if the fiber is sufficiently long, and the coupling coef-

ficient E is sufficiently small, we can produce very short sol-

itons with a very high peak energy. As is well known, in many

applications it is important to render the solitons as short as

possible. For comparison, the usual MI in the homogeneous mono-

mode fiber would produce the solitons with the peak power having

the same order of magnitude as the initial cw power Q0 '
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INTRODUCTION

The nonlinear interaction of the two polarizations in optical fibers, which results
from the tensor character of the susceptibility of nonlinear optical media, has recently
attracted substantial attention. As was noted in' isotropic single-mode fibers are really
bimodal because of the presence of a small intrinsic birefringence that can lead to the
splitting of the pulses with the different polarizations. This effect can substantially limit
the possibilities of using such fibers for the purpose of information transmission. How-
ever, as was shown by Menyuk', the Kerr effect can stabilize solitons against splitting
due to birefringence. The either of the two polarization modes is able to capture the
other one such that the two pulses can propagate together in spite of the group-velocity
mismatch.

The copropagation of two high-intensity optical pulses in a nonlinear medium
with the Kerr-type nonlinearity is governed by the incoherently coupled nonlinear
Schridinger equations. These equations describe both the evolution of two coupled
waves with the same polarizations but different frequencies and the propagation of two
waves with the same frequency but different polarizations. In this paper the main at-
tention will be paid to optical pulse propagation in the anamolous dispersion regime of a
birefringent fiber, but our result can be also applied to a wide array of different physical
contexts which may be described by two nonlinear coupled Schr~dinger equations.

BASIC EQUATIONS AND STATIONARY SOLUTIONS

By using the well-known variables expressed in soliton units1 , master equations,
describing the evolution of the two polarization modes in a nonlinear optical fiber, may
be written in dimensionless form:

1

i(U. + 6Ut) + UtV + (1U12 + ,IVI 2)U = 0 (1)
2
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i(Vý - 6vt) + 2vt + (IV12 + a0U1[ 2)V = 0. (2)

In the case of silica or similar fibers, where the dominant contribution to the AV3 )
is of electronic origin, the coefficient a is : for elliptical eigenmodes, 2/3 < a < 2; for
linearly polarized modes, a = 2/3, and for circular polarized modes, a = 2.

Equations (1),(2) have been studied numerically' and by using variational approach 2.
It was shown that for small amplitudes the two pulses separate due to the different group
velocities. Above a certain amplitude threshold a fraction of the energy in one polar-
ization is captured by the another one and solitons consisting of both polarizations are
formed. The amplitude threshold increases with the strength of the birefringehce pa-
rameter 6. The bound state with the mixed polarization results when the partial pulses
in each polarization shift their phases in such a way that their group velocities become
equal.

Contrary to the nonlinear Schr6dinger equation, Eqs. (1, 2) can not be solved
by using the inverse scattering transform (IST). Therefore, many important questions
concerning the soliton dynamics in the framework of Eqs. (1, 2) are still opened. For
example, determination of the parameters of the initial pulse with the arbitrary profile,
which are necessary for establishing of vector solitons.

In the present paper we prove stability of the vector solitons for the case of equal
amplitudes in each polarization and obtain sufficient integral conditons for the mutual
trapping of fractional pulses.

Equations (1,2) have a Hamiltonian form:

iU, = 6H/6U, iW, = 6H/6VW , (3)

with the Hamiltonian:

H= 26J (UU- - WU-' + V'V, - VV,')dt +2 (4)

J(IUt12 + ,V, 2)dt J (1U14 + IV4 + 2aIU12IV 2•)dt.

We investigate stability of a stationary solution of Eqs. (1, 2) of the form,

(+ exp [(1 + 62)z - ibt sech(t), (5)

z(1 + 62)z + i6tsech(t),

Vo (Zt) exp + + (6)

Hamiltonian H takes the following value on the soliton solutions:

-] 62 (1 + a) 2

H[Uo, V0J = -- (N, + N)- 24 (N + Nj3). (7)

here N, = f IUI2dt and N2 f IVI2dt are integrals of motion.
The soliton solutions (5), (6) of Eqs. (1, 2) can be viewed as solutions of the Euler

equation that corresponds to the following variational problem:

bS = b(H + A2 N) = 0. (8)

Equation (8) means that all localized stationary solutions of Eqs. (1, 2) realize the
stationary points of the Hamiltonian H while N is fixed.
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SOLITON STABILTY

;J For proving soliton stability it is sufficient to present the Lyapunov function L
which satisfies the following conditions:

1.L[Uo, V0] = 0, a minimum of L is attained on the stationary solutions;
2.L[U, V] > 0, L is a non-negative functional for the perturbed states;
3. 2L < 0, L is a non-increasing function of z.
The present method of stability investigation is naturally formulated for Hamilto-

nian systems (see e.g.3). If the Hamiltonian of the system H is bounded for the fixed
N, one may use as the Lyapunov function the following combination, L = H - min(H).

Let us show now the boundedness of H for the fixed N. By using the H61der
inequality one may estimate the first term in the Hamiltonian:

-6 1 (U(~t - I*UtL + V*Vt - VVt*)dt < -(N 1 + N2) + 2 + IVt-2)dt.(9)
2 J 2 )+tJ(I

At the next step, we use the following inequality to estimate the nonlinear term:

I f 4dt < - ( f dt)1/2( f2dt)3/2. (10)

After substitution of these inequalities into the Hamiltonian (9) we obtain the
resulting formula:

62 (1+ a)2(N + N 3). ( 1H > -- (N± + N 2) - 2

HŽ 2 24

The remarkable fact is that the minimum of the Hamiltonian H, which we have found
is reached exactly on the soliton solutions (5), (6): H[U0 , Vo] = min H. It means that
the soliton solutions (5),(6) realize the minimum of the H for the fixed N and so the
Lyapunov function L for the bound state in the form (5), (6) can be constructed.

SUFFICIENT CRITERION FOR MUTUAL TRAPPING OF PARTIAL

Because Eqs. (1), (2) are not integrable, there is no exact answer even on the
following simply formulated question : Which kind of initial conditions for the Eqs.
(1), (2) lead to appearance of the vector soliton (5), (6) ? In order to find a working
criterium of establishing of vector soliton from an arbitrary initial pulse in the framework
of Eqs. (1), (2), let us consider the following equality:

2 Jt2(IUI2 + IV12)dt = 2H + 2b
2 N+

f (IUVI2 + IV,12)dt+ i6 I (Ut* - U*U, - VV7 + V*V,)dt. (12)

The last term in Eq. (12) can be estimated as above. Inserting the estimation (9) into
(12), one obtains:

' J t2(IU12 + IV12)dt > 2H + b2N,

the sufficient conditions of spreading or splitting of the pulses for simple configura-
tions. Termin "simple" means that in each polarization distribution with only one

407



maximum exists. For such configurations, under the condition 2H + b2N > 0 the
integral f t2 (1U12 + IVI 2)dt tends to infinity as (H + W62N)z' that corresponds either
dispersional spreading of initial distributions or splitting appart of the partial pulses in
each of the two polarizations. In both situations a vector soliton does not appear. For
the more complicated configurations one need another approach.

Therefore, we obtain now an exact condition for the mutual traping of the pulses
from different polarizations. It would be reasonable to define the following criterium of
a cross capture in the framework of Eqs. (1,2). One may say about a capture then the
cross-integral f [UI 2IVI'dt is bounded from below by some positive constant.

In order to get needed criterium, we rewrite the expression for Hamiltonian:

a I 1Uf 21Vi 2dt = -H + -6f (UUI - U-Ut + V-V, - VVt-)dt+

' J (1R12 + Vti2)dt - - J (1U14 + IV14)dt (13)

Noting that the nonlinear term in the right-hand side of Eq. (13) can be estimated by
using formula (10) we easily get (I,=f IUI2dt,12=f IVI'dt),

a I IU2Vle2dt >

62 1 1_1/2N3/2 1 1/2 3/2
-H - -N + -(I + 12) - W N - h>

-H - b2N - I(N3 + N23). (14)
-2 24

Thus, for the arbitrary initial distribution with:

H < -- N - 1 + N2

the cross-integral f.IU12IV2dt is bounded from below by some positive constant. It
means that some part of energy in one polarization is captured by another during the
propagation along the fiber.

We would like to point out that the criterium obtained can be used for an initial
pulse with an arbitrary shape, not only for the sech-type pulses , which were considered
in1',2.

In conclusion, we have proved stability of vector solitons by constructing the Lya-

punov function. We have found analitically the integral requeriments on the parameters
of the injected pulses which are sufficient for mutual trapping of fractional pulses of dif-
ferent polarizations.
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INTRODUCTION

In this paper we present experimental and theoretical results on the nonlinear dy-
namics of a semiconductor laser exposed to optical feedback (see Fig. 1). This relatively
simple system displays a wealth of interesting phenomena, which only now are start-
ing to be understood. The delayed feedback turns the system infinite-dimensional,
which together with inherent nonlinearities in the light-matter interaction gives the
rich dynamics. The well-known Ikeda ring cavity system1 is in some senses the passive
counterpart of this active system.

Technologically, intentional feedback has been used to reduce the linewidth of semi-
conductor lasers by several orders of magnitude (from tens of MHz to a few kHz, say).
On the other hand, feedback due to reflections at various interfaces is very difficult to
avoid. Feedback fractions as small as 10-` (-80 dB) have thus been shown to affect
laser operation and for feedback levels in the range of 10-' to 100 the laser linewidth
broadens to several tens of GHz, with detrimental effect for most applications 2'3 . The
phenomenon has been denoted "coherence collapse"2 and is now believed to be a man-
ifestation of ultrafast optical chaos.

Figure 1. Semiconductor laser with feedback from an external mirror. The distance to the
mirror (-, 10-100 cm) is much larger than the laser diode length (-,, 300 Jim).

MODEL AND BASIC PROPERTIES

The laser dynamics is described by the Lang and Kobayashi equations4 for the
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complex electric field E and the carrier density N

dE 1dt - 1(1 + ja)(G(N) - r--')E(t) + -yE(t - r) (1)

dg = J_ N _ G(N)1 E 1 2  
(2)

at To

Here, G is the gain, which to a good approximation increases linearly with N, a intro-
duces an important amplitude-phase coupling, J is the pumping current, and r, and
ro are the photon and carrier lifetimes. Finally, I-y and arg(y/) reflect the level and the
phase of the externally reflected field, and r is the roundtrip time in the external cavity.

For -y = 0, (1) and (2) reduce to the usual equations for a (solitary) semiconductor
laser oscillating in a single diode cavity mode. Upon inclusion of feedback, the station-
ary solutions of (1) and (2) show that the original mode is split into a group of modes
with frequency spacing approximately equal to the mode spacing 7-- of the external
cavity. The number of modes increases with feedback level through usual saddle-node
bifurcations, and in the presence of noise the laser may jump between the different
modes. For not too strong feedback levels, it was shown" that the modehopping dy-
namics can be quantitatively described by an analytical potential model derived from
(1) and (2). The model gives excellent agreement with experimental results, and iden-
tifies the mode closest to the original diode cavity mode as the dominant mode. As
the feedback is increased this mode becomes increasingly dominant. At a certain feed-
back level, however, the mode looses stability through a Hopf bifurcation and a stable
limit cycle solution is created'. The frequency of this solution is approximately given by
the relaxation oscillation frequency of the solitary laser, which is the characteristic reso-
nance frequency for the exchange of energy between the photon and carrier populations.

QUASIPERIODIC ROUTE TO CHAOS

The evolution of the limit cycle for increasing feedback is illustrated in the calculated
bifurcation diagram in Fig. 2, where we plot the carrier density N in an appropriately
chosen Poincari section. The limit cycle first bifurcates into a quasiperiodic solution
(torus), where the second frequency is close to l1/, which is followed by a frequency
locked solution of order four that period doubles. The period-eight solution then bifur-
cates into a quasiperiodic solution and finally becomes chaotic. 6s 7

0.005-

. 0.000- "'• '

- 0.005-

-0.010-

-0.015
0.004 0.008 0.012 0.016 0.020 0.024

Feedback level K

Figure 2. Theoretical bifurcation diagram.
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Experimentally obtained phase diagrams for the transition to chaos are presented
in Fig. 3. The figure essentially shows the laser intensity 1(t) versus I(t - T), with T
fixed. Since the dynamics occur on a very short time scale (the basic period is about
200 ps) the detected signal was first frequency down-converted.7 The results in Fig. 3
were supplemented with measurements of the intensity noise spectra." In conclusion,
the experimental results strongly support the quasiperiodic route to chaos predicted in
Fig. 2. In this feedback range we have also observed the existence of three-frequency tori
in numerical simulations, and nearly degenerate Hopf bifurcations leading to competing
attractors have been predicted theoretically and seen experimentally.67

-45 dB -43 dB -39 dB

-34 dB -31 dB

Figure 3. Experimental phase portraits for different levels of feedback.

LOW-FREQUENCY INTENSITY FLUCTUATIONS

The region of chaos extends to very high levels of feedback, but by anti-reflection
coating the facet facing the external mirror it is possible to reach another region of
stable narrow linewidth operation. 3 Fig. 4 shows experimental time-series for a fixed
high feedback level and increasing bias current, which is another way of entering the

). =12.3 inA 6)J $=12.5 nU c) J = 13.0

d)J 3.5 -) 14.0 f) J -20.0"&

Figure 4. Measured time dependence of output power. Horizontal scale: 200 nsec/div.

region of chaos. For bias currents close to threshold the laser emission is stable, but
for slightly larger currents the laser intensity undergoes sudden randomly occuring
drop-outs, followed by intensity build-up occuring in steps of duration T. The rate
of droputs increases with current. Based on similar experimental observations, an
intermittency route to chaos was suggested." We have, however, previously shown that

411

I



these low-frequency intensity fluctuations (LFF) are explained by a simple iterative
model in terms of dynamic bistability.s During most of the build-up, the laser intensity
is monostable, but from a certain point it becomes bistable, and a new drop-out occurs
after a statistically distributed first passage time. The theory also led to predictions
about the spectral distribution of the laser light in the different steps, which were largely
confirmed by recent measurements, cf. Fig. 5. Just before the drop-out (step no. 0),
laser emission occurs in the low-frequency region. It switches to the high-frequency side
after the drop-out, and then slowly drifts back again during intensity build-up. There
are still features of the spectra in Fig. 5 that are not well understood, but we believe the
results demonstrate that the LFF are not chaotic in nature. Fig. 4, however, show that
the LFF are interrupted by bursts of high-frequency oscillations, and the rate of these
bursts increases with current. This resembles an intermittency route to chaos - but
on the background of stochastic LFF. Furthermore, numerical simulations with high
time resolution show that the LFF actually are deeply modulated by high-frequency
oscillations. These results may indicate that chaos occurs on a short time scale, whereas
the slow (average) LFF dynamic is governed by a simple bistability phenomenon.

10

2

3 10

5

12
6

7 1

Figure 5. Experimental spectra taken at different (numbered) steps of the LFF, correspond-
ing (approximately) to the time series in Fig. 4c. Two spectral orders (spaced by 190 GHz)
are shown, and the frequency increases towards right.
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PULSE COLLISIONS IN BIMODAL WAVEGUIDES
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PULSE SOLUTIONS OF THE COUPLED NLS EQUATIONS

In an ideal axisymmetric optical fibre the electric field is

_E(r,0, z,t) = [AE+(r, e)e'0 + A-E-(r,O)e-'8]e'* + c.c. (1)

U1 = iEle, ± E 2eo + E3., 4' = kz - Wt,

with real Ei = Ej(r). At 'monomode' frequencies w, the dispersion relation defines a
single positive value k = k(w) with corresponding phase speed w/k and group speed
c. = [k'(w)]-. Under Kerr-law nonlinearity, the amplitudes A+ and A- of left- and
right-handed modes evolve according to the coupled Nonlinear Schr6dinger (NLS)
equations

iA:- = A*.. + (I A' 12 +h I A* I2)A±, (2)

where x =: e(z - c.t), = -r c(w)e z. The constant h(= 2 in the weak-guiding
approximation) is defined (Parker and Newboult, 1989) in terms of cross-sectional
integrals involving U+.

Solutions with A- =_ 0 (A+ - 0) describe left-handed (right-handed) circularly
polarized modes governed by a single NLS equation (for A+ (Tr, z) or A- (,r, ), respec-
tively). Solutions A = e-Fiaa(r, z) (i.e. A-/A+ = e2 /o) give

LE a(.r, z)[E+ei(0-a) +-- -ei(a0-)jei# + c.c.

which may be regarded as linearly polarized in the plane 0 = a with complex ampli-
tude 2a(-,rz) satisfying the NLS equation

ia, = a.. + (1 + h) I a 12 a. (3)
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Since a general pair (A+, A-) of complex amplitudes may be written as

A' = (p ± q)e'(P•a); p M !(I A+ I + j A- 1), q A+ A-
22 I-A ,

it is seen that the fields (1) are a superposition of two linearly polarized modes having
respective amplitudes p, I q 1, polarization angles e = a, a + lir and phases/O, P +
2lwsgnq. Thus, at any ('r,z), the modal field locally is elliptically polarized with
principal axis aligned along 9 = a = 1(argA- - argA+). It has left- or right-handed
orientation depending asq>0orq<0(1A+I > jA- or IA+I < jA- ).

This account concerns collisions between pulses

A' = F+(c)exp - i(#*r + V, + 0-), a - x - i - 2Vr, (4)

where •,0 6*, i and the 'speed' 2V are constants and where F: (a) are real symmet-
ric, nondistorting pulse envelopes which may be parametrized as F±(a) = rf+(ra;p),
where

fL(71) + (f± + hf4 - p4)h+ = 0, p + = ( vl V2)/r. (5)

The conditions f+ = cosp, f- = sinp, f± = 0 at -9 0 with f-h --+ 0 as -7 c-
define an eigenvalue problem for p+(p) and p_(p).

Solutions may be written f+(17;p) = f(7;P), f-(17;p) = f(17; 1r - P), P+(P) =

p(p), p_(p) = p(!7r - p), where f(i7;p) and p(p) are displayed in Fig. 1 for h = 2.
The corresponding pulses

A+ re-i6+e-i(v-+O++)f(ro;p), A- = re-16- e-i(va+-)f(rIu; 1 r - p)

12

P0 P (P)",
000.500,,

.8 50 0.502
15------- 0.521 /

300 0.599
.6 450 ---------- 0.750

600 ---- 0.953
75 ------ 1.140

.4 850 1.210

g0o

90.. ..... \ ", ,•
, ,, / .,.. N,,:<-%

-10 -5 0 5 10
Figure 1. Pairs of pulse envelope profiles f(i(;p), f(,7; Jr - p), h = 2.
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are elliptically polarized with polarization angle 1(6+ - -) - P(/3+ - •)r which
evolves with -r (just as elliptically polarized, but modulationally unstable, uniform
wavetrains rotate as they travel).
The special cases: (1) f(q;0) = sech(q/v ), p(0) = I/v2_ with f- 0, and
(2) f(/; ar) -- (1/vý2)sech( l•vT'-hq), p(1r) = 1V1 + h with A- = e21A+

describe sech-envelope solutions of the appropriate uncoupled NLS equations.

NUMERICAL COLLISION EXPERIMENTS

For collision studies, the invariance of (2) to translations in z, -r, arg A± and a
Galilean invariance (shift in carrier frequency) allows the choice of incident pulses as

A: = 7iexp - i[Voi + V 2 T + 7•p4(pi)T]f±(710r1;p1)

+ -72eXP - i[-Vw+2 + V2-r+-y2j(p2),r -30 ± a]f+('Y22; p2), (6)

with respective amplitudes 71, 72 and ellipticities pl, p2, where 0l = x -•i -
2Vir, 0`2 = Z - z2 + 2Vr. The right-travelling pulse (subscript 1) has polarization
and phase at the pulse-peak a, = 0 both chosen as zero at r" = 0. The left-travelling
pulse has polarization 0 = a and phase fP at r = 0, 0r2 = 0.

Despite non-integrability of (2) (except for h = 1, Zakharov and Shul'man, 1982)
earlier studies for p, = 11r, P2 = ir or 0 (Newboult, 1989) show that, after collision,
profiles of A± separate into two new pulses (subscripts 3,4) having form

"A-- E jxp - i[Vj-i + VjT + 7jp~p(pj)T -- j ± - ajf±(7juj; pi) (7)
j=3,.4

• 'p 4 ---- 9 -3 8 ° P 3 = 8 "4 40 3

Vt 45o P, = 45 '5-
P,4 - 22.57* p4 37.920

50.240 3 2.8

P, 450 300 p=45 W P2 45
0

Figue 2. Evolution of A+ I- A- I ...... Re I A+ ,ReI A- Iso shown at r 0.
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with o 1 x - ii -2 sand V3 t-_ V, V 4  -V. Figure 2 shows jA+ Iand IA- ifor
a linearly polarized pulse P, = lr colliding with pulses having various ellipticities P2,
with V=4, a= ir, 13=O;71 =,y2 = 1, *1 = 12.5, i2 = 27.5. Two pulses emerge
with little additional radiation, even though the pulse parameters are considerably
modified. Tests show that p3, p4, -s and -y4 are insensitive to the relative phase 1
and that V3 = 4, V4 = -4 with -ys, -y c 1.

For smaller relative 'speed' 4V, separation into two pulses is less perfect, as seen
in Figure 3. For V = 0.4, the linearly polarized pulse becomes virtually circular,
while the elliptical pulse becomes almost linear. It is found that the right-travelling
signal depends strongly on a; for example, for a = 0* it appears to broaden and decay
without establishing a permanent form.

(a) (b)

Figure S. Collions for pl =45',p23 0 ,a45*, ,3=0; 71= 72= 1;() V 1.0,
(b) V = 0.4.

Finally, Figure 4 shows the collision of two elliptically polarized pulses pl = P2 =

30*, "] -7 y'2 = 1 for V = 4. For a = 450, two substantially different pulses emerge,
while for a= 0 the pulses have ps = p4.

Figure 4. Collisions of elliptically polarised pulses for (a) a = 450, (b) a = 0*.
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DYNAMIC RESPONSE OF SEMICONDUCTOR

NONLINEAR OPTICAL WAVEGUIDES
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ABSTRACT

Pump-probe excitation of passive nonlinear semiconductor optical wavegiudes is
examined in the slowly varying envelope approximation. It is shown that the pump
pulse may be used to control the chirp imposed on the probe pulse by self and induced
phase modulation.

1 INTRODUCTION

An initial investigation of the dynamic response of multiple pulses in a nonlinear
medium can be obtained using a pump-probe type experiment.

This technique uses an intense pump pulse to induce changes in the optical properties
of the medium, which then subsequently perturbs the propagation of a much weaker
probe pulse.

The electric field of the pulses will be taken as,

E(z, t) = 1/2R [A(z, t) exp z(floz - w0t)] (1)

where .A(z, t) is the complex envelope function, fl0 is the propagation constant and
wo is the carrier frequency. In the subsequent sections the usual convention of dropping
the R operator will be used.

2 TIME DOMAIN COUPLED PUMP-PROBE EQUATIONS

When a weak probe pulse enters a nonlinear medium which has just been subjected
to an intense pump pulse, the changes induced in the medium by the pump alter the
propagation of the probe pulse. An induced phase modulation, (IPM) is generated
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as well as the usual self phase modulation, (SPM). The IPM induced by the pump
dominates over the probe's SPM.

Similarly the pump will feel the presence of the probe through a very small IPM
component. However the pump's SPM dominates over the IPM generated by the probe.

By making the slowly varying envelope approximation it is possible to obtain two
coupled equations for the propagation of the pump and probe envelope functions,
A,(z,t) and A.(z,t), [11,

a( p +1 ap) +wp n2p(wp) [IAp 2Ap+2IA .12Ap] + Ap 0 (2)

(ýA. + - 1- a ) + wn 2 (w) [I A12 A. +2 1ApI2 A] + zaA= 0 (3)
az v. Ot c

Herefli, wi, n 2i(wi) and ai are the propagation constant, carrier frequency, nonlinear
index and absorption respectively. The subscript 'i' takes the value of either 's' or 'p'
to signify the signal or pump pulses. If the pulse widths are such that the nonlinearity
occurs because of steady state Band-filling, [2] can be used to calculate n 2(w).

In the pump-probe approximation I A, 12<<I A, 12 and hence Eqn(2) can be simplified
by neglecting the IPM term, 2 A ,4, 12 Ap. Similarly, the SPM term in eqn(3), A A, 12 Ap,
can be ignored.

By writing the pulses in terms of their amplitude and phase,

Ap(z, t) = a(z, t)exp[zt(z, t)] (4)

A,(z, t) = b(z, t)exp[zO(z, t)] (5)

and assuming the following initial conditions,

a(O, t) = aoF[(t - to)/TI (6)

b(O, t) = boG[t/,r] (7)

00 )= 0(0, ) =0O (8)

the subsequent solutions to eqn(2-3) are then,

a(z, t) = aoF[(t - to - z/vp,)/r]exp(-apz/2) (9)

b(z, t) = boG[(t - z/v,)/rjexp(-az/2) (10)

'(z, t) = wpn2p(Wp) 1 - exp(-apz)) a2oF 2[(t - to - z/vp)/-] (11)

O(z, t) = 2 exp(-apz)F2 [(t - to - z/v, - z'(1/vp - 1/v,))/r] dz' (12)Sc /o
p iHere r is the pulse width and Fft, z] and G[t, z] are, as yet unspecified, initial pulse

profiles. The initial time displacement between the two pulses is denoted by to.
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3 PUMP-PROBE INTERACTION

The Eqns(9-12) describe the propagation of pump and probe pulses in the same waveg-
uide and overlapping in time. The overlap between the two pulses alters the phase of
the probe signal significantly. The probe experiences a phase variation across the pulse
which is no longer proportional to its own intensity or centered about its peak value.
The maximum phase change now occurs at a position that is dependent on both the
initial time delay between the pulses and the difference in their group velocities. The
changes induced in the pump by the probe are small and can be neglected.

These changes in the phase in turn alter the chirp, bw, induced across the pulse.

=w = 00(z,t) (13)at

The minus sign in eqn(13) occurs because the harmonic time variation of the pulse has
been assumed to be of the form exp(-wt).

Probe Phase

230.10'.

• ~,r/zO.O3-0-V7.

10.0,10'

5.0.10'P

0.0.10 .
-8 -6 -4 -2 0 2 4 6 8

Normdised Time

Figure (1). The Probe pulse phase for ?7z= 0.0, 0.5, 2.0 and 4.0. The time delay was
set at To = -0.5.

4 RESULTS

Both the magnitude and position of the probe's phase and chirp can be controlled by
the pump pulse, as can be seen in figures(1 & 2). The initial pulse profile was taken
to be sech 2(t/r). Two parameters can be used to describe the relationship between
the pump and the probe's phase, q = (1/vp - 1/v.)/r and To = to/f. The value of 71z
influences both the maximum magnitude and width of the phase variation across the
probe. Higher values result in a lower and broader phase profile. qz is a measure of
the walk-off between the two pulses as they propagate down the guide. The normalised
time delay, To, shifts the phase profile around within the probe pulses, in units of the
pulse width.
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Figure (2). The Probe pulse chirp for r7z= 0.0, 0.5, 2.0 and 4.0. The time delay was
set at To = -0.5.
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INTRODUCTION

Solid state lasers coupled to nonlinear auxillary external fibre cavities have been
demonstrated to exhibit optical pulse compression using the Additive Pulse Modelock-
ing (APM) technique1' 2. In APM, pulse compression is obtained by the interferometric
addition of a laser pulse and a chirped pulse which is produced via self-phase modu-
lation in a nonlinear external cavity. In order to obtain pulse narrowing it is required
that constructive interference occurs near the peak of the pulse and that destructive
interference arises towards the wings of the pulse. APM has led to the generation of
100 fs pulses using mode-locked colour centre lasers.

Recent work work3 has examined a number of alternative structures which may be
* utilised for APM. Here we direct our attention to modelling an APM configuration con-
i* structed from an erbium doped fibre laser coupled to a nonlinear external fibre cavity.

APM MODELLING

The basic fibre laser and nonlinear cavity arrangement is shown schematically in
Fig. 1. The fibre laser is coupled to a passive nonlinear fibre through a mirror with
reflectivity r. The lettering a1,,, and a2.,, denote the light pulses arriving at the mirror
from the fibre laser and the passive fibre, respectively. b1,,, and b2,, are superpositions
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of the transmitted and reflected parts of the incomming pulses, i.e.

b,,, = ral,n + vf/ - r2a 2,n

b2,n = -v -r 2,n - (,1)

n counts the number of cavity round trips made by the pulses in the APM configuration.

bl a2

Laser Fibre

al b2
Mirror

Figure 1. Schematic diagram of the all-fibre pulse mode locking configuration.

Following earlier work on optical soliton theory 4' we describe the propagation of
the optical pulse in both the laser and external cavity fibre by means of an extended
non-linear Schr6dinger (NLS) equation which includes gain, loss, and terms due to the
self-frequency shift

8A aA i _8 2A 12

-7 + '81- + 0-2 - i-y I A A +

1 3 A a 12 a 122 A 6 3_ý -+ r.,Yt(I A A) + I2~ A

G 1 2 A.Go (A + 2-t-2 (2)

A = A(z,t) is the electric field amplitude measured in units of VW_ (W=Watt) at the
cross sectional position z and at time t in the fibre. #I is the inverse group velocity
which equals ng/c where n. is the group refractive index and c is the velocity of light
in vacuum. The parameter P2 is related to the dispersion parameter D through 82=
-Ao 2D/(2rc) with Ao being the wavelength of the carrier wave. The parameter -y =
n 2wo/(cAeii) measures the strength of the nonlinearity of the fibre where n2 is the
nonlinear index coefficient, Asy the effective core area and w0 is the frequency of the
carrier wave. ct represents the linear loss in the fibre laser as well as in the passive fibre
cavity. Third order dispersion is included in the # 3-term and the nonlinear terms in r-i
and x2 arise from the self-frequency shift with x, = 27/w0 and x2 = iyTR. TR is related
to the slope of the Raman gain and is assumed to vary linearly with frequency in the
vicinity of the carrier frequency. The right hand side of Eq. (2) models a bandwidth
limited gain including steady state saturation2 . The parameters Go and wb are the gain
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and the bandwidth, respectively. In the passive fibre Go is zero. P is the total pulse
power defined by

Fr is the repetition frequency of the pulse and P.,, is the saturation power of the
fibre laser. The assumption here is that the saturation of the gain is in response to the
average power in the pulse and that dynamical saturation effects are not significant.

4V0 .0 I 4 .0 ( s )
20,a

00 to-

QO

0( n
Figure 2. (a) Pulse amplitude ai,,,(t) as function of n and time t. (b) Full Width Half Max-
imum (FWHM) as function of n. Parameter values: Go = 0.43m-1, 0 = -2.36, Xo = 1.55jm,
n= 1.45, n2 = 3.2- 10-2 0m 2/W, 61 = 4.83 - 10- 9 /m, 62 = -3.44ps 2/kM, 033 = 0.1pa3/km,
D = 2.7ps/(km nim), a = 0.39dB/kin, Aej7 = 39(pm) 2 , Fibre length=2.05 m, F, e= - 1.0. 108Hz,
P..t = 2mW, r=0.9, v7 = 0.8, TR = 5fs, and wb = 2.35. 1013 Hz.

As a short hand notation we introduce an operator 0 = O(A(z = 0), G0 ) which
accounts for the propagation of the light pulse through the fibre section with gain Go.
Go = 0 models the passive fibre. APM requires that the distances between the two
fibres and the coupling mirror are balanced and thereby utilizing the effect of a small
intensity dependent dynamic phase shift resulting in coherent addition only towards
the peak of the pulse. In our model this is achieved by multiplying the outgoing pulse
a2,, from the passive fibre with the factor exp(-io'), where 4' is the static phase shift or
phase bias'. Furthermore, there are coupling losses when the pulse enters and leaves a
fibre. This coupling loss is denoted by j7 and it is assumed to have the same magnitude
for both fibres. The model can now be completed by

a , ,, nO(v7b 1,_-, Go)
a2,n 7je')(7b2 ,3 ._.,0) (4)

which is to be solved numerically together with with Eq. (1) describing the coupling at
the mirror.
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SIMULATIONS OF PULSE COMPRESSION

In a full numerical simulation of the APM configuration it is possible to obtain
detailed information about the transient dynamical behaviour during pulse compres-
sion and to obtain the final steady state pulse. This is demonstrated in Fig. (2a)
showing an initial pulse ai,o(t) = Bisech(B 2t) launched toward the mirror with a2,o(t)
= b1,0(t) =b 2,0(t) = 0 and using G0 = 0.43m-1 and 0 = -2.36. Fig (2b) depicts the Full
Width at Half Maximum (FWHM) as function of the number n of cavity round trips.
It is seen that after about 300 round trips the FWHM has decreased from 3.53ps to
234 fs. Starting out with longer pulses results in the same final steady state indicating
that substantial greater compression factors can be achieved.

Refering to previous results7 8 it is mentioned that the phase bias i plays an impor-
tant role for the stability of the single pulse propagation. Only within a narrow interval
of the phase bias values is it possible to obtain single pulse propagation. Outside this
range the pulse either dies out or breaks up into multiple pulses.

A too small gain G0 inhibits single pulse propagation, in this case the initial pulse
dies out. Increasing the gain reduces the FWHM to a limiting value and for a suffi-
ciently high gain the pulse breaks up into multiple propagating pulses. This break up
phenomenon limits achievable pulse-shortening in this APM system.
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THE LIFETIME OF MOLECULAR

(DAVYDOV'S) SOLITONS

A.S.Davydov-
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252143 Kiev, Ukraine

INTRODUCTION

There is a very important problem in the science of bioenergetics - how to store and
transport biological energy in the protein structures. An answer to this problem was
suggested in 1973 by Davydovl-' who proposed a model for the energy transport in
quasi-one-dimensional biological systems. The basic idea for this model was that trans-
port energy is done due to to separated formations, so-called Davydov's solitons that
almost freely travel through the system.

Theoretical investigations of the lifetime of Davydov's solitons in one-dimensional
systems prove to be the most difficult problem in the theory of solitons. In the present
paper we discuss some questions which are to be solved to estimate correctly the lifetime
of solitons in molecular systems. The problem of calculating the lifetime of solitons has
arised in recent years with a view to clearing up whether the lifetime of the Davydov's
soliton at nonzero temperature is long enough for it to be used in biology. I think
that many of the previous estimates of Dpvydov's soliton stability at finite temperature
should be revised.

Some authors revealed nonstationary states as states described by the part H. of a
total Hamiltonian H. The remaining part V = H - H. was considered as the reason
for transition to other states. But division of Hamiltonian into parts H. and V is
arbitrary and nonsingle-valued. So the lifetime obtained by these calculations is also
non-one-valued. Therefore, it is no wonder that they obtained not real lifetime r. For
example, in the paper by Bolterauer4 it was obtained r = 10-14 - 10-12s. Cottingham
and Schweitzer' obtained " = 10-14 - 10- 12

8. These authors do not astonish these
values are smaller than the lifetime on one isolated intramolecular vibration (10s12) in
condensed medium, so they devoid of a physical meaning.

On the other hand Bolterauers and other authors (see references in 7) found solitons
to be stable at T = 30K. Cruzeiro et al.7 derived a thermally averaged Hamiltonian and
found stable solitons at 300K. But in those papers, as in the paper by Davydovs, it was
really considered not the lifetime of solitons but their properties at finite temperature
after thermalization. And what is more, the calculation is fulfilled as in the paper7

under condition that f I%12 =const, which corresponds to the assumption about an
infinite lifetime of soliton.

*deceased February 1993
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THE PROPERTIES OF SOLITONS AT DIFFERENT TEMPERATURES

The exceptional stability of solitons is stipulated by the mutual influence of two phe-
nomena: the dispersion and the nonlinearity. The dispersion induces diffusion of the
localized excitation, organised from the monochromatic waves. In the linear system
this diffusion does not compensate because of the independence of plane waves. In the
nonlinear system there takes place the rearrangement of the the energy between them.
The energy is taken away from fast growing waves and passes to the waves lagging. As
a result the excitation remains localized.

At present while investigating the thermal stability of a soliton nobody really con-
siders the lifetime as a soliton creates at some moment, but considers its properties in a
system which is in contact with the thermostat at different temperatures. When inves-
tigating the properties of solitons at different temperatures it is very important to take
into account that there are two types of phonons in the theory of solitons: 1) the virtual
phonons which describe the displacement of the equilibrium positions of molecules of a
chain under creation of the soliton and 2) the real phonons which describe the vibrations
of molecules round the new equilibrium positions. Only real phonons go into thermal
equilibrium. The virtual phonons do not depend on the temperature. The method of
separating real and virtual phonons was proposed by Davydov in 8 where the influence
of temperature on the properties of solitons was investigated.

A.Davydov was the first to consider the quantum mechanical effect of the quasi- one-
dimensional chain of N periodically repeated neutral molecules at sites na maintaining
contact with a thermostat at temperature T 0 0. Stationary states of one intramolec-
ular vibration or one extra electron in this chain in the short range approximation are
described by the Hamiltonian H = H0 + Hph + Hint where

N

Ho = -J E [2A+A, - (A+A,,+, + h.c)]
n=1

is the operator of energy counted off from the energy band bottom of a free quasi-particle
(an electron, or intramolecular vibration) with effective mass m = h2/2a 2 J.

For a quantum description, it is convenient to express the displacements, U,, at the
n-th molecule from its equilibrium position, na, through the operator of creation, b+,
and annihilation, bq, of phonons by the formula

u,,= ý2 oN + = )

where M is the mass of a molecule, a is the equilibrium distance between molecules,
V. is the velocity of a long-wave sound. The wave number, q, runs N discrete values.
The energy operator of short-range deformational interaction of a quasi-particle with
the displacement has, in the linear approximation, the form

Hint = N- 2E F(q)A+A. (bq + b-q) exp (inc)
n,q---

F(q) = F*(-q) = iaA• (q) MVI-' sin(.).

Here aA is the energy of the deformational potential. The operator of the logitudianl
deformation energy of the chain has the form

Hr, = •e(q)b'b,

4N6



e(q)= hlqlV.

is the energy of a phonon with a wave number q.

Stationary states of the chain are described by the average of the energy

=€- ('IIHJ'I), ("'It') = 1 . (1)

In this expression, the wave function %I) is defined by

I'I) =",'"(t)Snq(t)A~j Vq.)

where
S.9 • exp [&.(t)b, - (t)b+]

is the unitary displacement operator. The functions &.(t) are modulated waves

&n(t) = fig(t) exp (-iný) . (2)

The action of the unitary operator S,,q upon the operators bq and b+ leads to their
displacement by complex numbers #,, and f3 q because

b4 =_ SnqSq b- #q..

These equations show that the interaction of a quasi-particle with the chain results in
the vibration of the molecules about the new equilibrium positions &q,. These vibra-
tions are characterized by the new creation and annihilation operators (b+,bq) of real
phonons. The real phonons describe the vibration of molecules around the new equi-
librium positions. Only real phonons go into thermal equilibrium. The function (2),
which describes the displacements of the equilibrium positions of molecules of a chain
under creation of soliton, is temperature-independent. In quantum theory these dis-
placements correspond to the virtual phonons. Take into account these properties of
real and virtual phonons, very important in the theory of solitons which circumscribe
thermodynamically equilibrium states.

In the chain in thermal equilibrium with the thermostat at temperature T, the
statistical average of model Hamiltonian (1) is reduced to replacing the quantum number
vq of real phonons by their averages

((Vq) = exp (c•.q) -1

After calculation, the averaged value of (1) is transformed to the energy functional

((H)) = - E{JJ[2ýPqiI - exp(W.) ((oPoq,. + c.c)]-

N-(pF(q) q I + i39n) + e(q)[((Vq)) + kPqnI'Ifq I']

where the Debye-Waller factor exp (Wn) is defined by

S= 1 E jt2 (1 + 2((vq))1) (3)

The energy functional (3) describes both nonlocalized and autolocalized states. The
autolocalized states are stationary states in which the distances or the orientations of
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the molecules change in some finite region of the chain, i.e. there is a local violation of
translational symmetry. This localization region may occupy any part of the chain. Con-
sequently, general translational symmetry is preserved. Therefore, these autolocalized
states are characterized by the energy and total momentum related to the movement
of the localization region along the chain with a constant velocity that depends on the
value of the wave number k.

The autolocalized states arising under the short-range interaction are described by
nonlinear differential equations. They are usually called solitons to distinguish them
from the autolocalized states first introduced in 1933 by Landau 0̀ and elaborated by
Pekar" when describing the electron motion in ionic crystals. The latter states were
called polarons, because they are caused by the long-range (Coulomb) interactions of
electrons with the field of electric polarization of a crystal which is described by the lon-
gitudinal optical phonons. The properties of polarons are defined by integro-differential
equations.

Now we investigate the case when the autolocalized quasi-particle occurs in finite
region of a long aN (N > 1) molecular chain 3 . Assume that the state of quasi-particle
in such a chain is described by the function

0.(t) = O(n) exp [i(kan - wt)]

with a fixed wave number k, and the real nonzero amplitude 0(n) only in some finite
(not too small) region of a chain.

Near the region in which quasi-particles are mainly distributed, the energy functional
(3) takes the form

((H)) = E{J (21012- -[ ,.+., + c.c]exp(-W.) + •e(q)[((v,)) + Iu.,I1 - (4)
A q

-N-2 EF(q) 1.2(e,, +,6;j), e(q) = hfjq. (5)
9

In states in which the quasi-particle location region exceeds much the distance be-
tween the molecules If.12 < 1, at low temperatures (0 < OD) , from (5) we can obtain

Ja-• J[20. - (40.+, + 0.-1)] exp(-W.) + G(n)Ifn 12JO (6)

where a nonlinear parameter G(n) is

D a2x2/MV2, s2 < 1G(n) ;. % G 1---2 , D =-a (7)

and Debye-Waller factor exp(-Wn) is defined by

W, = B,1 + 2exp exp(-WW.)]• (8)

Here
B. ; 7.3 * 10-5 D416.J 2 < 1.

In the continuum approximation (6) takes the form

h 22eW 82
{ih! - 2J[(1 - exp(-W)] + 2m L + +G1@1 2}- 0. (9)

Its solutions on the infinite chain can be written in the form

*(z, t) = O(z) exp[i(kz - wt)], (10)

420



where O(z) is a smooth real function in the system of coordinates z , moving with
constant velocity V, thus,

z=_x-z 0 -Vt, V=hk/mr<V..

It obeys the equation

The localized solutions of (11), normalized on the infinite chain, is defined by the function

O(z) = ý/6/2sech(zO) (12)

with parameters
Q - GeC/4aJ, A =_ -a 2X2eW/16J.

The energy of the chain deformation in the region of the n'th molecule is

E•! = D. J *(z)dz = D2eW /24J. (13)

The energy of the quasi-particle in the potential filed of the deformation well that moves
with velocity V, is defined by

S= 2J[1 - exp(-W)] + a2(k2 
- Q2)J exp(-W). (14)

The first term in (14) indicates a decrease in resonance interaction caused by the fluc-
tuations at intermolecular distances. The second term characterizes the energy gain by
binding at the quasi-particle in the field of deformation.

To calculate the total energy E(V), transferred by a moving soliton, we must add
to (14) the energy of deformation. So we obtain

-i D2 w 1m 2w
E(V) = 2J[1 - e-w] - 4---e + (15)

At temperature 0 that is smaller than maximum energy of phonons, eo, and at small
velocities, the soliton total energy (15) can be written as

E(V) =E(O) + M, otV2, O <Co ,

where
E(o) = 2J[1 - e-w] - D "

is the soliton energy at rest, and

Ma = meW[1 + a 2x4 /12h 2M 2V2]

is its effective mass.
At zero temperature the function W = 0. With rising temperature, the erergy gain

when the rest quasi-particles are bound with deformation, is defined by

D2

AE = T-j + W(2J 2 - D2)/48J.

If the inequality 2J 2 > D2 is fulfilled, the increasing temperature (under 0 <e .) causes
increase in W and stabilizes the soliton. Its binding energy and effective mass increases,
but in agreement with (12) the effective size decreases.
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THE TOPOLOGICAL STABILITY OF SOLITONS

When investigating the lifetime of solitons we need to know the initial time when it
was created. The time evolution of soliton state will depend essentially on the time
when the thermodynamic equilibrium with a thermostat is established. The soliton can
pass a long distance before its parameters (W and others) will be thermalized. As we
know while studying the lifetime of solitons due to thermal motion nobody has taken
into account these very important circumstances. The main disadvantage of current
theoretical research of excitons is also the neglect of topological stability of solitons.

The soliton is organized as quasi-particle coupled with the local deformation on the
chain. The space distribution of a quasi-particle (an exciton for a vibrational excitation
or an electron of the conduction band) in a system x = z - Vt moving with velocity V
is defined by the bell-shaped function

,02(f) = (2Q)-sech2 (Qf). (16)

The decrease in the intermolecular distances in the region of a bisoliton is described
by the function p(f) _ 4 2(f). This decrease is caused by displacements of equilibrium
positions of molecules and is described by the function

(0 ,at> (17)
(4)--4[l-tanhQf]= 2A ,ate<0 (17)

So, when a soliton moves with velocity V all equilibrium positions of molecules behind
it are displaced by the values 2A, but in front of it, the positions of molecules are
not changed. For the soliton to disappear, one needs to waste an energy to transfer a
quasi-particle into a free non-local state (exciton or electron in the conduction band)
and returns all molecules which were displaced to their initial states. This circumstance
prevents the destruction of a soliton and guarantees its topological stability.

On account of topological stability solitons can be created and disappear only at the
ends of molecular chain. This very important property was not taken into account in
works devoted to the calculations of the lifetime of a soliton. Therefore, the estimate of
the lifetime of solitons made previously require a total revision. We remind once more
that usually one considers not the lifetime, that is the time of the existence of a soliton
from the moment of its appearance, but only the properties of an existing soliton at
different temperatures.

THERMALIZATION OF SOLITONS

In nonlinear system with dispersion, that is the medium, where the phase veloctiy at
monochromatic values is the function of wave length and its amplitude, the perfect way
of the energy transport is realized by the nonlinear solitary waves. These waves transfer
energy without loss and preserve their form. These unusual properties of bell-shaped
moving local excitation enabled Zabusky and Kruskal" to call them solitons. In contrast
to the monochromatic waves, which describe periodic repetition in space the elevation
and deeping on the surface of a water, on contraction and rare-action of a density, or
deviation from average values of the other physical properties, solitons are characterized
by single excitations, spread as unit with constant velocity without damping.

For the first time solitary waves were observed by John Scott Russel more than
150 years ago. Many times he observed the movements of the barges along the chan-
nel Edinburgh-Glasgow. He published in 1844 these observations in paper "Report on
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Waves" 12 . He discovered, that under a sharp stop of a barge from it a part of the waves
is repeated and with a big velocity rolled, receiving the form of a single elevation, con-
tinuing its way along the channel without any noticeable change in its shape and does
not decrease its velocity. This wave was called the wave of translation or solitary wave.

Only after one hundred years, the interest in the solitary wave renewed. Particular
interest induced the paper which was published in 1955 by collaborators of the Los
Alamos Scientific Laboratory Fermi, Pasta and Ulam1 3 . In this paper the condition of
thermalizing energy in nonlinear vibrational systems was investigated. Using the new
computer they attempted to clear up the conditions of the thermalization of the vi-
brations in a chain of periodically situated particles which linear and quadratic forces
operate. It was well known that in a condensed medium the vibrations of atoms can
be represented in the form of a superposition of monochromatic vibrations. In a linear
medium these vibrations are independent. Under weak nonlinearity between monochro-
matic vibrations interactions arise which reduce to the thermalization. The precise
calculations by Fermi, Pasta and Ulam showed that in a system with quadratic nonlin-
earity the thermalization does not occur. This result appear to be paradoxical for a long
time. It was resolved by Zabusky and Kruskal" only ten years after. They showed that
long-wave excitations in a discrete chain are described by nonlinear equations. Their
solutions were stable bell-shaped excitations. It was found that the nonlinear interac-
tion does not cause the exchange of energy between them. This was the reason for the
absense of thermalization in the nonlinear system which was investigated.

In the papers by Fermi, Pasta and Ularn and Zabusky and Kruskal, the process
of thermalization in mechanical nonlinear vibration systems was investigated. In 1979
Eilbeck (in collaboration with A.C.Scott) investigated the propagation of Davydov soli-
tons along peptide chain of the biological systems. They made a computer film 14 which
demonstrated the propagation of soliton in form of a local bell-like-excitation along the
peptide chain after it being created at the end of the chain moving to the other end
of the chain. Simultaneously with the soliton acoustic wave packet was excited. The
acoustic wave packet was moving with velocity bigger than that of a soliton, leavin.
it unchanged. Thus, the Eilbeck film visually demonstrated the stability of Davydov's
soliton relative to their interaction with the packet of acoustic waves. This interaction
is a reason of thermalization. Therefore, the soliton can be displaced on a long distance
transposing the energy excitation before the thermalization being arisen.

The exceptional stability of solitons is stipulated by the mutual influence of two
phenomena: the dispersion and the nonlinearity. The dispersion induces diffusion of
the localized excitation, organized from the monochromatic waves. In the linear system
the diffusion does not compensate because of the independence of plane waves. In the
nonlinear system there takes place the rearrangement of the energy between them. The
energy is taken away from fast going waves and passes to the wave lagging. As a result,
the excitation remains localized.

SOLITON GENERATION AND DISINTEGRATION IN MOLECULAR CHAIN

According to what has been said previously, because of the topological stability solitons
can be created and disintegrated at the end of molecular chain only. The possible
mechanism of soliton creation may be the following. An electron beam, light quanta,
local hydroless molecule ATP etc. excited the impurity molecule at the end of the chain
principal molecule. The excitation transfer into the neighbouring molecule of the chain
with which the impurity molecule is connected.

The process has been studied by Brizhik and others1". It is characterized by two
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parameters: parameter r which defines a nonresonance excitation transfer from exciting
impurity molecule onto a neighbouring one of the basic chain and J is the resonance
excitation transfer constant between the basic molecules of a chain. If the condition
r > J is satisfied, the excitation of impurity molecule will be localized at the molecule
of a chain nearest to the impurity at the moment t. satisfying the inequality Ai/r
t. < h/J. In this case the inverse transfer along the chain by resonance mechanism.

There is a low and fast process of disintegration of solitons. At slow process the
complete annihilation of soliton takes place, that is, the transfer of a soliton into a
nonlocalized state (excitation) and removal of a local deformation in the chain. AT fast
processes the transfer of soliton from quasi-localized state into nonlocalized takes place
so fast that a local deformation has no time to disappear.

As is known, at the moment of light absorption by molecular systems, the coordinates
of heavy particles are unable to displace (the Frank-Condon principle) . Since the
formation of a soliton is connected with the displacement of equilibrium positions of
heavy particles (the peptide groups in the muscle molecules, for example). So under
the influence of electromagnetic radiation, solitons disintegrate into rapidly relaxing
excitons and local deformation of the chain. This process will be called fast annihilation
of the soliton. The process of fast annihilation can occur at any place of the chain. At
fast annihilation, the energy expenditure is required, which equals the binding energy
of a quasi-particle with local deformation of a chain. For rest of the solitons an energy
deformation of chain is equal to U/2. So, for slow process one needs to spend the energy
equal to 2U/3.

Using the idea of solitons Davydov proposed in 1973 a new hypothesis of the mecha-
nism of the shortening of sarcomere length that evolved contraction of striated muscle2',1 .
According to this hypothesis under a nerve impulse the calcium ions reach the first series
of myosin molecule heads at the ends of thick filament initiate the hydrolysis of the AT-
P molecules attached to them. The energy released generates solitons in a long helical
section of myosin molecules which make up the thin filament of the muscle fibers. They
move from ends to the center and the displacement of the surrounding action proteins.

Spending their kinetic energy for the works necessary to contract the muscle fiber,
the solitons are slowed down and , stopping near the centers of the thick filaments, are
annihilated, giving up the rest of their energy to thermal motion. This is the reason for
the heating of the muscle during their work. Thus, only the kinetic energy of solitons is
used in the contraction of the muscle fibers of the living organisms.

. Thus, the disintegration (and so lifetime) of solitons are always stipulated by external
action of soliton.
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The activity of numerous biological molecules is controlled by the binding of a recep-
tor which produce changes in structure. These structural changes, in turn, modify the
barriers to various catalytic and transport functions. The molecular response function
to the stimulus for motion involves specific structural changes that require the corre-
lated displacement of thousands of atoms. Given the enormous number of degrees of
freedom involved in these functionally relevant motions, it is clear that the energy of in-
teraction with the receptor is being transferred in a highly directed fashion into the key
atomic displacements. To understand the biomechanics, it is necessary to determine
how energy is exchanged amongst these different degrees of freedom and the length
scale of the forces displacing the atoms. In this regard, hemne proteins provide ideal
model systems. Large amounts of energy can be optically deposited in the center of
the protein and the spatial dispersion or redistribution of this energy can be monitored
using optical probes sensitive to vibrational or translational energy. It is also possible
to optically trigger the functionally important structural changes involved in the al-
losteric regulation of oxygen transport in heme proteins. Thus, both energy exchange
processes and functionally important motions can be studied in a single system.

EXPERIMENTAL STUDIES

Vibrational Energy Relaxation in Proteins

The first experimental studies of vibrational energy redistribution in proteins took
advantage of the high sensitivity of thermal phase grating spectroscopy to follow the vi-
brational to translational energy transfer into the heme protein's solvation shell.' This
energy transfer process is the final step in the overall energy redistribution. This study
exploited the ability to optically excite the heme and create a non-equilibrium condi-
tion in which the absorbed photon energy is converted into vibrational energy of the
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central heme moiety on a picosecond time scale. The excess vibrational energy trans-
fers to other vibrational modes of the surrounding protein, spatially propagates to the
protein's exterior, and ultimately exchanges energy with the water through collisional
interactions. The thermal grating studies found that this exchange process had an
effective time constant less than 22 picoseconds. This work has been further validated
by infrared studies of the water heating. 2 In addition, time resolved anti-Stokes Raman
studies, using resonant enhancement to follow the decay of the excess vibrational en-
ergy of the heme, have found that the transient vibrational energy transfers from the
heme to the surrounding protein within 2-5 picoseconds.' The thermal grating studies
in conjunction with the Raman and infrared studies demonstrate that vibrational en-
ergy flow in these large molecular systems is occurring within the statistical limit for
intramolecular vibrational energy redistribution. 4

The main conclusion to be drawn from this work is that biological molecules are
extremely efficient at redistributing vibrational energy. The entire relaxation process,
from the decay of the initially excited modes to collisional exchange with the water,
is occurring on a picosecond time scale. Thus, it is very unlikely that energy can be
specifically channelled into atomic displacements through strongly coupled vibrational
modes as the lifetimes of any given mode is extremely short. The efficient energy
redistribution is going to make any mode strongly damped by the huge network of
anharmonic interactions between atomic sites. This dissipation process needs to be
considered in any model for functionally relevant structural changes of biomolecules.

Picosecond Phase Grating Studies of Global Protein Motion

More recently, the phase grating method has been applied to the study of tertiary
structural changes in heme proteins. These changes are central to the allosteric regula-
tion of hemoglobins and form the basis for theories of molecular cooperativity. In these
studies, the tertiary structural change is optically initiated by the photodissociation of
CO. This ligand exhibits unit quantum efficiency for photodissociation in less than 100
femtoseconds with recombination occurring much slower than the ensuing protein re-
laxation. This work discovered that the protein motion to the deoxy structure launches
coherent acoustic waves which match the grating wave vector.'

A.
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Figure 1. Grating dependence on protein (excitation energy=2 mJ/cm 2 ;

excitation wavelength=532 nm, probe wavelength=1.064 pm). The marked
areas depict the maxima of the protein wave, while other maxima are the

positions of the thermally driven acoustics. A. Carboxymyoglobin. B. Car-

boxyhemoglobin. C. Carboxyheme Octapeptide.



The generated acoustics are non-thermal and satisfy t=0 strain boundary condi-
tions. Representative results are shown in figure 1. These results clearly demonstrate
that the signal depends on the protein structure surrounding the heme. In the case
of hemoglobin, the quaternary structure mechanically constrains the tertiary displace-
ments of the individual subunits. Consistent with this concept, the amplitude of the
carboxyhemoglobin (HbCO) acoustics are found to be smaller relative to carboxymyo-

* globin (MbCO) which exists as a single heme protein without quaternary constraints.
In the study of carboxyheme octapeptide, there is a small signal at t=0, but no acous-
tics are observed other than the thermal mechanism. Carboxyheme octapeptide is
basically the isolated heme without the protein matrix. In the absence of the surround-
ing globin, the acoustics associated with the tertiary structural changes (the protein
wave) are not observed. Thus, the carboxyheme octapeptide study demonstrates that
the rapid density changes observed for MbCO and HbCO originate from changes in the
surrounding protein holding the heme in place.

In these studies, the protein motion triggered by the CO dissociation leads to ma-
terial displacement which is holographically recorded as density induced changes in the
index of refraction. In order for this motion to couple to the fluid hydrodynamics, as
observed, requires a global change in protein structure (volume change caused by a net
displacement of the exterior atoms relative to the interior). Thus, the phase grating
gives a real time method of monitoring global protein motion. The grating formation
dynamics provide a direct determinat;on of the time evolution of the protein strain
(AV/V). This is one of the key parameters needed to understand the mechanics.

A four pulse grating geometry has been used to study the short time changes in pro-
tein strain for carboxymyoglobin (MbCO). These studies serve as a model for tertiary
structural changes of the individual heme protein monomers of hemoglobin. The laser
system used for these studies consists of a hybridly modelocked dye laser synchronously
amplified by a Nd+S:YLF regenerative amplifier. The grating excitation pulses were
1-2 ps in duration at 585 nm. The nonresonant probe pulse was provided by the 50
ps pulses from the regenerative amplifier at 1.053 pm which were upconverted with
a residual dye pulse in the signal detection to conserve the time resolution. Previous
studies of the grating formation dynamics were limited by an optical Kerr effect (OKE)
which obscured the native protein response function.6
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Figure 2. Picosecond phase grating studies of MbCO. The upper curve is

the data collected for MbCO, while the lower curve shows the background
signal for the buffer alone.
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This problem was reduced by using a polarization analyzer and choosing probe po-
larizations that minimized the OKE signal. The results from this study are shown in
figure 2.1n the MbCO studies, a pulse width limited rise and decay is observed. This

signal component accounts for approximately 50 % of the grating amplitude and may
be due to transitions from the short lived (:5 3.2 ps) deoxyMb state accessed during
the CO photodissociation.' The exact origin of this signal component (electronic or
protein structural changes) can be determined through a wavelength dependence with
shorter pulses. Regardless of this complication, it is clear that the protein motion which
couples to the acoustics has a rise time of less than 5 picoseconds. There is no evidence
for significant, slower, relaxation processes indicative of conformational substates along
the relaxation coordinate at 298 K. At temperatures near the zero thermal expansion
point, however, nanosecond relaxation components are discernable in the absence of
the thermal acoustic interference. The amplitude of these relaxation components is
less than 10 % of the protein driven component. Therefore, the fast initial change in
protein strain appears to be the dominant relaxation step.

The grating studies probe the global protein motion. These changes in protein vol-
ume require a net displacement of the exterior atomic positions relative to the interior.
On the other hand, time resolved Raman studies of the proximal histidine provide a
measure of the local protein motion (changes in protein structure at a specific site).
The proximal histidine is the closest contact point of the globin to the heme and is
considered the focal point for the forces that drive the atomic displacements. Time
resolved Raman studies have found that the proximal histidine motion is complete on
a ten picosecond time scale or less.' The close correspondence in dynamics over these
two length scales of motion provides evidence that the initial structural changes are
propagated by collective modes. To be specific, in order for the dynamics of the acous-
tic strain of the protein to be correlated to the proximal histidine motion, the exterior
atomic displacements would have to be synchronized with the interior displacements
at the heme which would produce a segmental motion. This type of displacement is by
definition a collective mode. The correlation of dynamics for two different length scales
of motion is the most stringent test for the involvement of collective modes. However,
it would be desirable to have better time resolution in the Raman studies to determine
the exact degree of correlation between the protein strain and proximal motion.

It should also be noted that the observed rise time for the changes in protein strain
alone argues for the involvement of collective modes. An analysis of the normal modes
of deoxyMb and MbO 2 by Seno and G6 has determined that greater than 60 % of the
structural changes can be accounted for by the displacement of five spatially extended
modes of the protein with frequencies ranging between 5 and 12 cm- 1 .9 The vibrational
periods of these modes correspond closely to the observed grating dynamics. Based on
the vibrational energy relaxation studies discussed above, these modes would be over-
damped. Thus, the observed grating dynamics also indicate that the initial protein
response to ligand dissociation is the coupling of the heme to collective modes of the
surrounding globin structure. This finding is important as this is the most efficient
mechanism possible for the correlated displacement of atomic coordinates. Further-
more, this rapid initial phase of the structural relaxation would minimize the total
conformational phase space the protein would have to sample to arrive at the global
energy minimum corresponding to the new structure.

Femtosecond Transient Birefringence Studies

The grating studies provide information on the protein's structural relaxation pro-
cesses that lead to changes in volume or strain. There is also the possibility that there
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are structural changes in protein shape rather than volume. These dynamics would lead
to changes in the symmetry of the protein and would modify the material birefringence.
Femtosecond studies of these changes which follow CO photodissociation from MbCO
were conducted with a synchronously amplified CPM operating at 627 nm, which is
on the tail of the Q band of MbCO. The excitation and probe pulses were 50 fs in
duration with the probe polarization 450 relative to the excitation. The probe intensity
was monitored though an analyzer which was adjusted to be orthogonal (homodyne
detection) or rotated from the orthogonal position (heterodyne detection) relative to
the input probe polarization. Homodyne has the advantage of detection against a zero
background, however the observed signal goes as the square of the polarization rotation.
Heterodyne detection can be used to produce a linear response. The nonresonant opti-
cal Kerr effect (OKE) for water serves as a control for the system without the protein
present. In the case of water the OKE signal consists mainly of terms pertaining to
the nuclear motion of the solvent. The electronic contribution was conveniently smaller
than the observed nuclear terms and the calculated n2 is approximately 20 times higher
than those based on measurements which yield primarily electronic results.1 0 The data
was fit according to the models developed by D. McMorrow et al." which assumes that
the OKE response can be fit to a differential equation equivalent to a driven damped
harmonic oscillator. The data is deconvolved with the laser autocorrelation fu-ction in
order to account for the spectral bandwidth of the laser excitation. Figure 3A shows
the observed OKE signal for water and 3B its Fourier transform.
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Figure 3. Transient birefringence signal for neat water utilizing heterodyne detection (pulse width=

50 fs, wavelength= 627 nm, excitation level 500 nJ/pulse). A) The signal consists of two different
heterodyne levels which have been correspondingly scaled, 450 for t < 350 fs and 2.50 for t > 350

fs. B) The Fourier transform of the heterodyne signal that has been deconvolved with the laser
autocorrelation.

The deconvolved OKE data can be fit to four distinct librational components. These
consist of three broad peaks centered at 224 cm- 1 (A=.80), 388 cm-1 (A=1.0), and 617
cm- 1 (A=.73), where the highest peak has been normalized to unity. The linewidth
(damping parameter) was assumed to be the same for these components and had a best
fit of 180 cm- 1 (58 fs). In addition, there exists a peak centered at 56 cm-1 (A=.59)
which has a linewidth (damping parameter) of 78 cm 1 (134 fs). In order to verify the
results of the OKE experiment the Fourier transform of the data should be similar to
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spectra found utilizing depolarized light scattering (DLS) techniques. Indeed the 56
cm- 1 , 224 cm- 1 , and 388 cm-' modes correspond to those observed in DLS spectra. 12

In addition to the librational modes, there are three diffusional relaxation components.
The slowest component of 7.4 ± .4 ps can be assigned to diffusional rotational relaxation
and closely agrees with the theoretical value of 8 ps.13 A 1.6 ± .3 ps relaxation which
most likely corresponds to the transverse dielectric relaxation of water. The 322 - 33
fs relaxation can be assigned to the longitudinal dielectric relaxation and again closely
agrees with the theoretical value of 300 fs. 1 3 In the present context, the most important
feature of these results is that the nonresonant water contribution to the signal is
negligible for t >300 fsec. This experimental approach is capable of accessing the low
frequency modes of protein structures (< 100 cm- 1 ) with minimal interference from
th,- surrounding water. In cases, where the high frequency components of the protein
* needed, this well characterized water response can be subtracted.

In the protein studies, the pulse width could not be maintained due to the absorp-
tion peak at 580 nm. Any dispersion which occurs in the overlap region between the
pump and probe is not compensable, and the pulse width broadened to roughly 100 fs
FWHM. The MbCO response is dominated at short times by the electronic contribu-
tion. In addition, there exist two components of 195 fs (A=.41) and 2.4 ± .2 ps (A=.59)
respectively. The 195 fs component can be assigned to the 56 cm-' librational mode
of water based on the relative amplitude expected from the pure water sample at these
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Figure 4. Transient birefringence studies. MbCO is the solid line and
deoxyMb is the dashed data using heterodyne detection (input pulse width=

50 fs, wavelength= 627 nm, excitation level 200 nJ/pulse).

excitation levels. The possibility that the 2.4 ps relaxation corresponds to structural re-
laxation induced by the CO dissociation can be checked by comparing deoxyMb under
the same conditions. The deoxyMb serves as a control in which the protein does not
undergo any structural changes. The OKE signals for MbCO and deoxyMb are shown
in figure 4. In this figure, the data is normalized relative to the 56 cm-1 component of
water which serves as an internal reference.
As seen in figure 4, deoxyMb also exhibits a similar 195 fs (A=.60) and 2.2 ± .4 ps
(A=.40) relaxation components. However, the amplitudes and exact temporal depen-
dence is not the same as that observed for MbCO.

The physical origin of the induced birefringence in the proteins can arise from two
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different processes at this excitation wavelength. The first is that the excited deoxyMb
electronic state, produced in both cases, produces an anisotropy in the sample either
through imaginary contributions to n2 or by thermalization of this short lived state and
asymmetric expansion of the protein. The second possibility corresponds to the direct
laser excitation of the low frequency Raman active modes of the protein. Within this
interpretation, the frequency response is qualitatively in agreement with the normal
mode analysis of myoglobin9 and the dominant mode observed would correspond to
protein relaxation times comparable in time scale to that indicated in the grating
studies. Given that the amplitudes of the two responses are not the same for MbCO and
deoxyMb suggests the later explanation is the correct one. The dissociation of the CO
ligand and subsequent heme doming would be expected to further displace the protein
modes than that induced by the laser field alone. The contributions from excited state
effect.- would be expected to give the opposite trend, i.ethe changes in optical density
and thermal heating of MbCO are less than that for deoxyMb. Based on the observed
differences between MbCO and deoxyMb, these studies provide supporting evidence
for the low frequency protein modes implicated in the grating studies. However, a
definitive assignment of the transient birefringence awaits a comparison of these results
to nonresonant excitation studies in which excited state and CO dissociation processes
can be singled out.

Thermal Phase Grating Studies of Structural Relaxation

The grating studies give information on structural relaxation components that lead
to volume changes. These structural changes are analogous to collective acoustic modes
in solid state systems. The observed dynamics are consistent with an initially rapid
phase for the structural relaxation in which the doming of the heme, upon ligand disso-
ciation, couples to spatially extended modes of the surrounding protein on a picosecond
time scale. Other studies have given evidence for multiexponential processes occurring
on much longer time scales which are indicative of conformational substates along the
reaction coordinate.14 The energetics associated with each phase of the structural re-
laxation car oe used to determine the relative importance of each phase of the protein
relaxation. In addition, the energetics determine the amplitudes of the driving forces
and the time scale under which the protein accesses the stored emery in its structure.

The energetics for the protein relaxation have been determined using thermal phase
grating methods. The experimental setup is identical to the phase grating studies
discussed previouslys with the exception that the medium was changed to 75% glyc-
erol/water in which the thermal acoustics dominate. The thermal acoustics can be
readily distinguished from the protein driven acoustics by the phase of the observed
acoustic modulation. In the thermal case, the first maximum in the thermal signal
appears at one half an acoustic period from t=0 which is determined by the speed of
sound for thermal expansion over the grating fringe spacing.4 The important feature of
this experiment is that the amplitude and dynamics of the thermal grating are related
to the energy relaxation process.

These experimental studies are shown in figure 5. The decay of the acoustic modu-
lation is due to acoustic attenuation in viscous medium. In this study, the deoxyheme
protein analogue serves as the signal reference for 100% energy deposition. of the ab-
sorbed photon energy within the impulsive limit, relative to the current grating a,-cGu-tic
period. In making a direct comparison of the MbCO and HbCO to their deoxy ana-
logue under identical conditions it is clear that less energy is dissipated in the myoglobin
case. The difference in energetics is related to the Fe-CO bond energy and any energy
stored in the protein structure which is released during the structural relaxation.The
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results to date show that MbCO is endothermic by 21±2 kcal/mole in which the energy
relaxation is complete in less than 200 ps.

This energy is close to the expected Fe-CO bond enthalpy1 5 and represents the fraction
of the photon energy that remains stored in the system. There does not appear to
be a substantial amount of energy stored in the protein for the oxy (ligated) to deoxy
structure transition. Myoglobin appears to act essentially as an elastic basket for the
iron ligand. In contrast, carboxyhemoglobin is endothermic by 11 ± 3 kcal/mole, i.e.,
", 10 kcal/mole of excess energy is released. This energy difference between monomeric
myoglobin and tetrameric hemoglobin is related to structural differences in the two
proteins. This is an intriguing finding as it may be related to quaternary structure
effects. If so, the difference in energetics would reflect the energy stored at the subunit
interface, which is the distinguishing quaternary feature, and would be related to the
energy of molecular cooperativity. The origin of the structural dependence needs to
be studied further with hemoglobin subunits to rule out effects due to the tertiary
structural difference between Mb and Hb.
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Figure 5. Phase grating studies of the protein energetics in 75% glyc-
erol/25% water using 532 nm excitation and a 1.064 pm probe. A. Deoxy-
hemne protein B. HbCO. C. MbCO.

It is interesting to note that for both MbCO and HbCO the observed energetics are
very similar to thermodynamic measurements of the heme protein/CO reaction. The
thermodynamic values represent the steady state limit for complete conversion from
the ligated to deoxy equilibrium structures. This value for the observed energetics is
attained in less than the 200 picosecond resolution of the thermal grating in its present
configuration. This observation and the lack of any significant slow relaxation compo-
nents (between 200 ps and 10 ns) suggest that the protein relaxation is energetically
complete on a picosecond time scale. The protein accesses any stored potential energy
in its structure on an exceedingly fast time scale.

CONCLUSIONS

Both the time scale for the observed global relaxation and energetics from the grat-
ing studies are consistent with a collective mode mechanism for the initial tertiary
structural changes. Slower relaxation components have been observed which are in-
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dicative of the involvement of conformational intermediates in the complete relaxation
process. However, from the study of the energetics and the amplitude of the pro-
tein strain associated with a collective mode response, it appears the initial picosecond
relaxation step is the dominant phase of the structural relaxation. The acting forces dis-
placing the atoms appear to be extensively distributed throughout the protein. Given
the rapid energy redistribution mechanisms present in these large molecules, this rapid
phase of the structural changes would be important in propagating the system as far
as possible towards the global energy minimum corresponding to the final equilibrium
structure. This may be a general feature of protein response functions.

Most important, the fast changes in protein volume or strain provide a simple frame-
work to understand the mechanics of the communication pathway between the subunits
in hemoglobin. Each subunit would act to alter the a,8 interface force balance with
the ensuing strain changes at the tertiary level. At some point the cumulative effect
of ligand dissociation is to displace the force balance to favor the R to T quaternary
structure change. This cooperative molecular response is occurring within linear lim-
its of the atomic displacements, at the tertiary level. However, it is the modulation
of the barrier height (an exponential dependence) at the quaternary level which im-
parts the nonlinearity essential for a molecular amplifier. The enhanced sensitivity of
hemoglobin to oxygen concentrations through this cumulative strain effect is essential
for the efficient transport of oxygen.
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SOLITON STATES IN A CHAIN

WITH TWO ATOMS IN A UNIT CELL

Larisa S. Brizhik

Bogolyubov Institute for Theoretical Physics
Ukrainian Academy of Sciences
252143 Kiev, Ukraine

The soliton mechanism of the energy transport, suggested by Davydov and Kislukha',
was further developed and applied to the wide variety of phenomena in physics and
biology2'. The mechanism is based on the model of ID chain with an extra quasipar-
tide ( exciton, electron or hole), interacting with longitudinal displacements of atoms.
Real systems differ from this model first of all by a complicated structure, and in their
spectra there are various branches of ,'brations. Naturally the following questions arise:
i) why the Davydov model takes into account the interaction with acoustical phonons
only, and to what extent this model is applicable to real systems, and ii) is the Davydov
soliton stable under the interaction with other vibrational modes.

To answer this questions qualitatively, one can consider two-atom chain with atom
masses M1 , M2 ; energy levels Ei, E2; the electron-phonon interaction constants Xh, X2;
and exchange interaction parameters J2n,2n+l = -J 2,n-1,2n = J in the case of opposite
atom symmetries (this model describes, for instance, the copper-oxygen chains in metal-
oxide compounds 4), respectively. The spectrum of this chain consists of two electron
bands with the dispersion laws

£ 2A+ l6J2sin2 (ka)], A = - E 2 > 0,

and two phonon branches with dispersion laws

fl'1 1 ' 4 sin(ka)
op,ak) p"M (2)

where M = M1 + M 2, p = MIM 2 /M.
The Hamiltonian of the system can be written in the form s

ir/a w/a

H = • 4 1 (k)AhkApu,k + , •3 hfl(k)(b~jbq,. + 1/2) + Hint, (3)
k=-ffa ~*c*,Oq=--/a *=OP,4c

where A',k, A,,k are creation and annihilation operators of an electron with wave vector
k in the lower p = a or upper p = Pi band, bqo, bq,, are creation and annihilation
operators of phonons with wave vector q of optical or acoustical mode.
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In the general case in this representation the hybridization of the interaction of
electrons from the lower and upper bands with both branches of vibrations takes place,
which leads to the interaction Hamiltonian in (3) being given in the form

Himk), , b + b_+q,a). (4)

If the ground state of the chain corresponds to one electron per atom, then the
conductivity of the chain is stipulated by donor or acceptor impurities which supply the
system with electrons in the valence band, or with holes in the conductive band.These
states of the chain can be described by wave functions IJe) = AOl',,) and I'h) =

A0 ,k I0'.) with I'.) = (H'k,. A+,k, 10) being the wave function of the ground state. In the
long-wave approximation the nondiagonal coefficients of the electron-phonon interaction
matrix equal zero X , q) = 0 for a 0 P and the rest are of the form

xp=2ix2 2Mqqa =a (5)X*PM~fo 9 ~x = 2iX2 2MMSo X 22V1 0  j'

A hM ,  A 2h qa (6)
X0p = -2ix, 2 MM21 1 oqa, x• = 2ixi 2MV 0

Therefore, the ratios of constants for each electron band are

JIxoP 2  M2  I [P 12  M,Siai--2 MVM' IxI 2  M2 VM .(7)

As it follows from (7), in the case of big difference of neighboring atom masses the
interaction of charge carriers in each band prevails with one phonon mode only. i.e.
if the inequality M,1 <' M 2 holds, then the electron in conductive band interacts more
intensively with acoustical phonons Ix~l2 

' Ix•PI 2, while the hole in the valence band

interacts more intensively with the optical phonons Ix.I 2  I.1 2.
With all these taken into account, the Hamiltonian (2) - (3) allows for the localized

state of the electron, interacting with acoustical phonons, which is described by Davydov
soliton function with the localization parameter

4mX2a 2

g = A2K(1 s2)(8)

and energy

1 2mXa 2  1(E. = -A at2; + 1M.(V)V2, (9)
3A2 r.2 +

which at V = 0 is less than the energy of the conductive band bottom.

In the meantime, the hole in the valence band interacts mainly with optical phonons,
and can be also in the autolocalized state, the function of which satisfies the equation

Ax = %/I1-2 2 G - In l+v( 2*2G +c (10)

where

G - 2 A2  M (A - 2e)
-i2l CM2 A2 1

and c being the constant of integration. But this state is energeticaly unadvantageous,
because its energy equals the value
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I h 2A 1/3
E =A 2+.mG[_ 2AG - (I - 3AG) (12)

which is bigger than the energy of the delocalized state of the hole in the valence band
A/2.

If the opposite inequality Mt > M2 takes place, under the same definition El > E2,
then a hole in the valence band corresponds to the Davydov soliton with parameters
(8) - (9), while an extra electron in the conductive band is in the delocalized state.

As the next step we shall take into account the influence of optical phonons on the
Davydov soliton, which is formed by the electron or hole, interacting with acoustical
phonons. As it was shown above, in the case of big difference of atom masses the soliton
interaction with optical phonons can be considered within the perturbation method.
This system can be described in the continuum approximation by the system of three
equations

6

0* h2 02*
MW.-- + " + X1P*1 = EX2U*', (13)

(0  v 8 aa (14)a - _ V2 ý P + MIA 02 1 p 12O, (14)
(N2 .v OX2 M t9X

& - o-X2 U + (15)P

where in view of the above investigations c is considered to be a small parameter, p
describes the deformation of the chain, and u is the deviation of interatomic distance
from the equilibrium value, caused by the optical mode. The weak interaction of the
soliton with optical phonons results in the dependence of soliton parameters on time,
which can be calculated by the Van-der-Pool method in the way similar to7 . This
leads to the conclusion that soliton wave vector k and phase 0 become the oscillating
functions of time

k(t) = ko - easin(wt), 0(t) = h0o/2m + c/(cos(wt) - 1) (16)

with small amplitudes of oscillations

a2q2x 2Air aqirAX2

2h wgd(l + D)' -hg 2wd (17)

and frequency w, determined by optical phonons

w = hkoq/m - flop(q), f12 (q) = f02 - V.2,q 2  (18)

while the amplitude and the width of the soliton are not changed8 . Here k0 and 00 are

the nonperturbed values of soliton wave vector and phase

k = mV/7i, 0o = h(k 2 + g2 )t/2m, (19)

the nonlinearity parameter g is determined in Eq.(8), q and A are the momentum and
amplitude of optical phonons, and

d = sinh D= qa•9 4K1g (20)
I D 3m V 2---I - 32•)"
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The weak interaction of the soliton with optical phonons leads also to the small
change of soliton envelope and the appearance of the tail of small amplitude, oscillating

4 in time with characteristic frequency w, and its overtones W1 .2 = w - hg2/2m, W, =
w ± hg /4m. The effective mass and energy of the soliton, interacting with optical
phonons, were calculated in Ref.'.

In the case, when the interaction of the Davydov soliton with optical phonons is
strong enough, the soliton changes the form and its velocity decreases linearly with
time6 .
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PROTON TRANSPORT IN HYDROGEN-BONDED CHAINS A TWO-COOPONENT
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Abstract : We study the dynamics of protons in hydrogen-bonded quasi 1-D
networks, in terms of a diatomic lattice model with a doubly periodic on-
site potential. In our model we can describe simultaneously the formation
and the propagation of the ionic and Bjerrum defects using well-known
soliton properties. We extend the model by considering the interaction
between the two sublattices and by introducing the dipole interactions due
to the proton motions. We consider a sinusoidal form for the dipole moment
and we study the equations of motions for both protons and heavy ions. The
existence of a double sine-Gordon equation for the proton motion in the
continuum limit, makes the study more appealing. We discuss the results
and probable extensions of the work.

INTRODUCTION AND PRESENTATION OF THE MODEL

Electrical conductivity in H-bonded crystals is an old problem that recen-
tly has been revived with the introduction of new techniques and ideas
from nonlinear physics. Hydrogen bonding is not important only in living
matter but it also provides the dominant mechanism in a variety of chemi-
cal substances. The most important point is that an understanding of the
electrical properties of systems with H-bonds will provide information for
a wealth of physical and biological [1] systems and processes, ranging
from relatively "simple" systems such as ice [1], to the more complicated
processes of proton transport across cellular membranes.
In previous scientific works [2,3] it has been attempted to explain the
protonic conductivity by using different models based on either the ionic
[2] or the bonding [3] defect formation and propagation. Although these
models can describe energy transport, dielectric polarization and proton
storage, they are not able to justify a permanent flow of protonic mass
and charge, necessary to explain the non-transient protonic conductivity.
For this reason we have to consider a model [4,5) that can describe
simultaneously both types of defects.
We consider a system with the diatomic structure of Fig.l. We focus our
attention only on longitudinal vibrations of both ions of the chain negle-
cting any interaction with the rest of the 3-D lattice. We assume that our
chain can be described by a linear chain with bond lengths equal to the
projections of the bond lengths of the original zig-zag chain onto an
axis. In our model we do not consider the electronic degrees of freedom
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and we do not take into account quantum effects. We also define a doubly
periodic substrate potential with two potential barriers, an intra-bond
and an inter-bond with heights hi ,b in order to explain the formation of
the ionic and the Bjerrum defects correspondently. The potential is shown
in Fig.l.

n-1 n n-1

* S i I

a 8.

Figure 1 The szig-zag geometry of the H-bonded network. We plot the
substrate potential V,(y;ot), (0<<), and the sinLsoidal variation of the
dipole moment P.

The Hamiltonian of the system consists of the sum of four parts. The
proton part is given as

H, = 7"[(ll2)mldynl/dt)2. (1/2)KI (y. - -y.) 2+ s V P(47,nllo()] Z

n

Where the first term is the kinetic energy of the proton masses, the se-
cond stands for the interaction between first proton neighbours, while the
last term represents the dynamical support of the protonic sublattice crea-
ted by the more rigid heavy ions, the long range interactions and the 3-D
atomic environment of the network.The displacement ynof the n-th proton is
measured from the middle of the distance of the bond that links the ions
and 10 is the equilibrium distance between neighbour unit cells. The heavy
ion part of the Hamiltonian is given as

H0 = X[(i/2)M(dY /dt)2+ (I/2)K2 (Y ÷1 - Yn)2 + Sovo(Yn/10)j . (2)

n

For the heavy ions of mass M the first two terms have the same physical
meaning as the corresponding terms of the r.h.s. of Eq.(1). The third term
is due to the on-site potential V0 which guarantees the rigidity of the
heavy ion frame and represents the coupling of the ion chain to the rest
of the 3-D system. K1 ,K 2 are lattice force constants, SP,S 0 are potential
barriers, and Y. is the displacement of the n-th ion measured from its
equilibrium position.

Hint = xX:(Yn- Y- 1 ) P(4Lnyn/1 0 ) " (3)
n

The large proton mobility and the large mass M compared to m, permit the
separation of the dynamics of the system into two interacting sublattices.
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1Hint can be considered as a special but satisfactory approximation of more
generalized expressions [6]. The coupling constant X depends on the system
and its sign plays an important role in the physics of the problem.
The Hamiltonian Hdd is introduced as a result of the dipole interactions
due to the proton motion. We consider the dipoles placed on the protons
and we examine their mutual interaction. We consider a sinusoidal form for
the dipole moment (given in Eq.(4), where X is a constant), which fulfils
certain physical prerequisites [7].

Hdd = Xi 2: PnP.I' P. = Asin(2my./lo) (4)
n

EQUATIONS OF NOTIONS

If we consider that the longitudinal displacements of the heavy ions are
very small compared to the proton displacements, we can assume that the
geometry of the zig zag model remains statistically stable and we can
approximate the H4d by Eq.(4), where 0, is a constant which may account
for the environment of the chain. One convenient way for further work is
to introduce the dimensionless quantities un =4Ayn/1 and w =Y /10. With
these definitions the substrate potentials in Eqs. (I), (2) can be written
as

Vp(u,;a) = [2/(l-?)][cos(un/2) - ]2 Vo(wn) - (/2)w . (5)

The on-site potential V for the proton sublattice depends on the parame-
ter a which controls t~e relative widths of both barriers as well as the
distance between the two proton minima in each lattice cell. The on-site
harmonic potential V0 is taken to be parabolic. According to the defini-
tions of V we consider the interaction function )(un)=Cos(u /2)-cos(u 0 /2)
with uo=2arccos(ct) and ±uo are the two proton minima. We measure every-

thing in the units e0 for energy, to=(M/K 2 )1/ 2 for time, 1o for length. In
this way we obtain a dimensionless discrete set of equations of motion
which cannot be solved for the general case. If we consider the continuum
limit, the N coupled difference differential equations reduce to the
following two partial differential equations

ut_- c02U.+ 1lý(dVP/du) + Xtw.(db/du) + 2Dsinu = 0 . (6a

w 0- iow..+ ((dVo/dw) - x 2 (d4idx) = 0 (6b)

Where T=t/to, c =t 0 (KI/m)• , vu=to(K /M)• , x2 =t x/Ml,. and also

S=(4 rto/l 0 ) (SP/m) , rl 2=(to/1 0 ) (So/M) , B=i31 X2 , while it is

X1 =(4w) 2 t2x/ml 0 and D=(4ir)2 to2B/1024m. This coupled set can be solved analy-
tically in few cases. For fl=O we can obtain a double sine-Gordon equation
for the proton motion, and one easily integrable form for Eq.(6b). If we
are looking for localized solutions, moving at a characteristic velocity
v, we can introduce the new variable E=x-uT, and by considering zero inte-
gration constant for Eq.(7b), we can write

+ -sinu + -- 202sin(u/2) = 0 . (7a)u _V2• Co2)

w= X2 [cos(u/2) - oe]/ (6?- C0) . (7b)
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Where we call e v0) the new effective barrier
height. Analogous expressions we can obtain if we consider the oxygens as
frozen or if we examine the particular case v=v, which is the velocity of
sound in the ionic sublattice.

RESULTS AND CONCLUSIONS

The DSG equation has been extensively studied [8]. If we follow certain
methods [8] we can obtain two types of kink solutions for Eq.(7a): a small
kink I, corresponding to the transition from -uo to +uo. mod(4wr)0 and a
large kink II.corresponding to the transition from +u0 to the minimum at
(iT-u 0 ), mod(410. Transitions in the opposite sense correspond to anti-
kinks. Introducing these solutions into Eq. (7b) and after integration we
obtain for w again two kinks.

ao

-40.0 -20.0- 0 .o0 26.0 ,o.0 -,0.0 -6.o0 " i .6 20 " 40•.0
Partcles Parcles

S b d'J

C!~

Pa

. 1,

40.0 .- 2.o i.o 20.0 40.0 40.0 -20.0 0.0 2..0 o o.

Particles Particles

Figure 2 : A representation of1 the proton displacement u(c), in which w~edistinguish tow types of kinks. We also plot the derivative w, given by

Eq. (?b). The solution w t-pulse I Mb cor.responds to the small kink I (a),
while the solution wo-pise 11 (d) correspontds to the large kink 11 (c).

We note that the kink(antikink) I corresponds to I-(I÷) ionic defect,
while the kink(antikink) II corresponds to the L(D) Bjerrum defect. A
schematic representation is given in Fig.2. Thne protonic kinks (Fig.2(a)
and 2(c) ) are accompanied by compressions (Fig.2(b)) or rarefactions
(Fig.2(d)) of the heavy sublattice around the ionic defect.
In further works we can study the model by considering a more generalized
two-parameter [6] potential V P(u;cx,o) where 13 can regulate the relativeheights of the intra- and inter-bond activation barriers. If M:1:0 the

study reduces to a generalized sine-Gordon case for the protons. An impor-
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tant characteristic of the model is the correct response of the four
defects to an externally applied dc electric field. The extension of ana-
lytical and numerical calculations should be very interesting in the

presence of damping, dc electric field and temperature, but this will be
the aim of future studies.
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INTRODUCTION

The problem of the self consistent behavior of conductivity electrons interactingwith
phonons of the quasi one dimensional crystal (the Pierls-Fr6hlich problem) was recently
analyzed for the case of acoustic phonons 1,2. It was shown, that charge density waves
(CDW) propagating with velocities being less than the sound velocity can be described
in terms of one-gap potentials, in mentioned works. When velocity is close to sound ve-
locity, the approach developed in refs 1,2 fails. In present paper we show, that including
anharmonism of acoustic phonons into consideration allows to describe both subsonic
and ultrasonic CDW. It is also shown, that the problem in question is connected with
the many particle system, which can be considered as a many particle generalization
of the Hinon-Heiles system, which originally appeared in astrophysics. Under certain
conditions on the parameters, the ultrasonic CDW problem appears to be completely
integrable in terms of hyperelliptic theta functions. As the particular case the elliptic
one-gap potential is considered.
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THE HAMILTONIAN AND EQUATIONS OF SELFCONSISTENCY

Let us consider 2N electrons interacting with acoustic phonons of crystal. Let us
assume Hamiltonian of the system in the form

H = -Jaoa,,+,, + a,-, - 2a,,.,)
n,ff

+X E a-,(i.+, - + E fQbtb + I..,u.r, (1)

EZ ,on = 2N.
n,o

Here an,,,(a,,,) is the creation (annihilation) electron operator on the cite n with the

spin projection a (a =T, 1), J is the matrix element of th.. transition operator of an
electron, bl(bq) is the creation (annihilation) acoustic phonon operator with the wave

vector q and frequency PQ = 2 f sing I (a - lattice constant, w - elasticity constant,

M - atom mass),

1 1lha (2)
lin Mq; ~expifzqna} (bq %

is the operator of the displacement of the n-th atom, X is the constant oi the electron-
phonon interaction. The last term in (1) is the operator of anharnionic phonon inter-
action. We shall investigate the effects of anharmonism of third order, and we assume,
that H,,.,- has the following form

3.= _ (3)3 n,

The total momentum of the system,

P = h Eq(bb, + E ata,,) (4)
q o

appears to be the integral of motion and therefore states of the system can be classified
by the value of (4).

We investigate states of the system which are characterized by the value of the total
momentum with the help of the variation method, looking for the extremum of the
functional

F = (%P I H - vP I iP), (5)

where v is the Lagrange multiplier, which has the sense of the velocity of the excitation
propagation along the crystal, and I %') is the trial wave function, which we take in the
form

141 P,*,.alexp{E(Zqb' - Z,*bq)}, (6)
vo n q

where %P&,,, and Zq are the variation parameters, and 'T,,, are ortonormalized

E 
(7)

n

4W8
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We find by substituting (6) into (5) and varying over %P,. and Zq that the extremum
of the functional (5) is realized on the states (6), with the parameters satisfying the
system of equations

+0•: ~ ~~-J('P,t,,.÷ + P,•,,- 1 - 2'Pv,.) - m v=I=

+X(U.+l - u.- 1 )11  = `.,. (8)

-w(u,.+1 + u.-_ - 2u.) + Mv-' 2 u I=. +2x-{I ,+12 - I 121

+t[(.- _U+ 1)2 
- (U - U._1) 2] = 0, (9)

where un = (1i I TP) is the average of the displacement of the cite n.
The eqs.(8,9) yield in the continuum approximation ('P,,, =- lk(na) =I,(x,

1s,,n+1 = 14(x) + a-*- ... ) the system of the equations

- 2Rw. + 6.w. = 0, (10)

M"+ BR - cR2 +2E I .,1 2 = 0, (11)

written with respect to the quantities

R(x) = xOu(x), = W.x w I(x)exp(-t2"J) (12)

Sa (x) JW v 2J

where the notations J4 = E,--", B = 12(1-v 2 /v2),c = 62-' are used (vo = a-w/M
is the sound velocity). We remark, that the sum over v in (11) includes N lower
eigenvalues of (10). If we use the real and imaginary parts of the functions W(x),
w.(z) = f.(z) + ig,,(z), we obtain from (10, 11)

f." - 2R f,, + £,f,, = 0, g' - 2Rgt, + 4•g = 0, (13)

R" + BR - eR 2 + 2 (f + g,) = 0, (14)

where the summation in (14) is taken over N first states of eqs.(13). The system (13,14)
is a generalization of the system considered recently in '. It also can be considered as
a particular case of the Many Particle Hdnon-Heiles system (MPHHS). The description
of the standard Hdnon-Heiles system (HHS) see e.g.in 4-

INTEGRABLE MANY PARTICLE HItNON-HEILES SYSTEM

Consider the system

qi-2q.+Iqi + Ajqj = 0, i =1..,,(15)

q4,l + 4A+lq.+1 - Z q2 _n+ = 0 (16)
i=1

with the Hamiltonian

1n~ (I.22+ A232 (17)H =- E =q E A~qi + 4A,.+Iq:+2 +, q n-•;+l. (7
2 i=1 i=1-3
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We call system (15,16) MPHHS because at n = 1 it becomes the standard HHS 4.

The HHS is completely integrable at the following three cases (see, e.g. 5,6 i) e = 1,
A1 = 4A 2; ii) e = 6, A1,A 2 - arbitrary; iii)e = 16, 4A, = A2.)

The system (15,16) possesses two remarkable reductions.
a) at q,,+l = const it reduces to the Neumann system ' which describes the motion

of a particle over a sphere in the field of second order potential.
b) at q,+l = E•i= q,' it reduces to the anisotropic oscillator in the fourth order

potential z,
qi-2E-qA2qi + Ajq. = 0, i = 1,.. ,n. (18)

k=1

Painlevi analysis of the system leads to the conclusion, that it is integrable when
S= 6, & , i = 1,... , n + 1 - arbitrary. Lax representation, L, = [L, M I of the system is

written explicitly in the form of 2 x 2-matrices

W(z) -V(z) ),M =

( ) 2q,,+, + z 0

depending on the spectral parameter z. For the matrix elements we have

U(z) = 4(z "+ A.+ - qn+l) - E q' (19)i=1 z + A,'

V(z) =- = 2p,+' + qP,' (20)2i= z + A,'

O (z)
_() - 2 + (z +2q.+i)U(z)

= -4z 2 - 4An+lz - 4 +1 Eq" -4zq,+E z + A* (21)
k=1 i=

The particular cases of the above Lax representation were given in 5,'. The algebraic
curve C,+1 = (w, z) of genus n + 1 is defined in terms of (19-21) as

S= V(Z) 2  + U(z)W (z) (22)

and therefore has following form

w= -16z 3 - 32A.+,z 2 
- 16A2 +n + 8H + E Fk

,=Iz+ (3 A)

where H is (17) at e = 6 and F,,j = 1,... ,n are the additional integrals of motion

F. = 4(A.+, - Am,, - q.+,)(p?,, - (2q,+i - A.)q.2) +

+ (8Anqn+l - 12qq21  E )qn + 4qpmpn+l
i=I

+ E (qpk _ qkpm)2 (24)
1•k:<m<n A,. -,-'I:

The integrals (17,24) are independent and are in involution with respect to standard
Poisson brackets. Let us construct the separated variables following the usual scheme
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(see, e.g. 8) which defines them in terms of zeros u, 1 1,.. n + I of poly,,omial
U(z). The set of these zeros defines the parabolic coordinates 9,10 in terms of which the
system becomes

i 0, k =0,...,n,, A __ dt, (25)
!i=1 i=1

where y is given by the formula

n 27&+3

2/ =w 2 Z+A M)1 ][IJ l(Z -Z(Qi)), Z(Q 2 4+4) =o00, Qi Q, (26)
M=1 3=1

We introduce the canonical homology basis (a,,.. , a,n+1 ; bl,.. , b,n,+), the conju-
gated holomorphic differentials v = (vl,... ,v,n+) normalized in such a way that the
Riemann matrix has the form

(v.... jV; v....jv =(, _r). (27)

We also introduce the standard theta function

O(z;•') = exp i'{(m, •-m) + 2(z, m)}, (28)

where (.,-) denotes the Euclidean scalar product and the summation runs over all set
of integers m E Zn- 1 . Using the known hyperelliptic theta formulae ",

n+1 0(fQýh v + (f• ÷... + f•m +' )v + K;) ,)(29)1(IIL, + Ak) = hk0y•+ y: ••

A=1 i(fQ v+ (fo ÷ +...+ f&'oo)v + K; 7-) I=,.o

with the constants hk we obtain

2~(t) = qk2(0 02(Uo + K; Y-)0e(Ut + Uof + f.Av+K;r) ,
q9kt) = q•(0)02(Uo + f.A v + K; -)0 2(Ut +Uo + K; 7)' k 1,...,n

a2 n n-+1q,~(t) = -- -lnO(Ut + Uo + K; r) +-- Ai + 4A.+I + zv,(z), (30)

&2 s=1 -1 J.i

where K is the vector of Riemann constants, Uo arbitrary vector of the Jacobian of the
curve, the vector U comes from the decomposition v(z) = Ud( + ... , z = 1/(2 = 00.

The solution (30) is the quasiperiodic function of time and includes periodic ones as
particular case.

To return to the initial problem we have to set n = 2N and tend in pairs A 2 -1 --
A 21 = &,, 1 1,... ,n/2. The curve becomes singular and theta functions in (30) re-
duce to lower genera.

ONE-GAP POTENTIAL

Let us consider the important from the physical point of view case of one-gap po-
tential, i.e. the potential generating one gap in the spectrum of elementary excitation.
In this case the atom displacement is described by the formula

R(x) = Ro + p(z + w'), (31)
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where p is the Weierstrass elliptic function 12 and the value of the constant Ro will
be given below. One can check, that this case corresponds to the curve C3 with two
singular points. Two branches of elementary excitation correspond to (31):

1) 4 = 2R0 - p(is + w), where - w' < is <w_ ' and the quantity v = i(C(is + w) -

(is + w)-, I Y 1 has the sense of wave vector and

2 24X P(W +i)- P(X + W') (2
P(W + is) +

2)4 = 2Ro-p(is), where-w' < is < w' and the quantity V - i(((is)-is , I V I>
and

2 24X2 p(is) - p(z + w') (33)

The above relations show, that there exists a gap in the spectrum, £6 l.-/2-o
-- 6 I-../2.+O= p(0') - p(W + W') = e3 - e2 and the value

N(x) = 2E I 12•= 2--(VF - !!-F - SPp(X + W')), (34)

where vp = vra/2 (a is linear density of electrons in crystal), and the value 3F is defined
by vp = i[C(iSF + W) - (iSP + W)77/W] for Y < v/2w and VF = i[((iSF) - (iSF)/1/W] for
V > r/2w describes periodic distribution of electrons in crystal (CDW). The parameter
of the distribution can be found from the selfconsintency equations

V2 4 X2 2(4 2 2 8X 2 (, SF?=g2
8F =~ R-, 1± SFP~ + (35)

V.12 wrwV2 VW7~ 12'
which analysis combined with the ground state minimization over periods, will be given
elsewhere.
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THE FROHLICH CHARGE-DENSITY-WAVE

AS A LATTICE OF DAVYDOV'S SOLITONS

A.A. Eremko

Bogolyubov Institute for Theoretical Physics
Ukrainian Academy of Sciences
252143 Kiev, Ukraine

A self-consistent state of the conduction electrons and lattice deformation in one-
dimensional metal was considered by Fr6hlich in 19541. This state was then called
the charge density wave (CDW) and today it is widely studied both theoretically and
experimentally 2-4. The Fr6hlich assumption that only one phonon mode with the
wave number q = 2 kF (kF is the Fermi wave number) is occupied macroscopically
and interacts intensively with electrons, is often used for the explanation of certain
properties of the CDW.

Here, investigating the Fr6hlich problem, the exact solution to a system of nonlinear
equations for the electron wavefunctions is obtained. It is shown that the CDW repre-
sents a set of periodically distributed bisolitons considered by Davydov and Brizhik 5 .
The analysis of the exact solution evidently shows the presence of harmonics v,, = vn
in addition to the fundamental frequency v, in current oscillations spectrum, called
narrow band noise.

In continuum approximation without account o! Coulomb interaction between elec-
trons, a system of Ne electrons interacting with the lattice vibrations is described by
Fr6hlich Hamiltonian1

N.
H = .(q)e"' (6q + b-,)l + 9 hVolqI6~,. (1)

3 q q
Here m is the effective electron mass in the conduction band, V. = avf-W-;1M is the
sound velocity in the chain with lattice constant a, atom masses M and the elasticity
coefficient w;

x(q) = 2iX MV q (2).k VTTj
where X is the parameter of deformational short-range interaction of the elec ,ith
atom displacements.

To find out the wavefunction of the system we make use of the variational method
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and take into account that the total momentum operator

N. a
P =-) ihj- + E hqbqbg (3)

commutes with the Hamiltonian (1). If we take interest in the state of the system
with certain value of the total momentum, the wavefunction should be found from the
condition of functional extremum'

F = (*IH - VP - eNeI4') (4)

where e and V are the Lagrange multipliers.
The wavefunction of the system is written as

i'I({,,9} {bOQ 'hY~i(X,,O'i1)eSI0) (5)
where 1is = -b~3;q (6)

and N 1and({jO'j}) D - .detkw,%,,(xj,aj)j, i,j = 1,2,...Ne. (7)

Here 10) is the phonon vacuum state and WoA,\(x,vr) = are the orthonor-
malized one-electron wavefunctions involving both the space 0,\(x) and spin ta(Or)
(a = +1,-1; a = +1,-1) functions.

Using the independent variations of the functioiial (4) with respect to /, and the
electron wavefunctions, we get a system of equations

x*(q)f(q)
=V= h(v- q)(8)

h2 d2

[2-- + U(x)]•,x(i, ,AI'(X) (9)

where
N. L/2

f(q) = e d= J e-'iqpl(x)dx (10)
-L/2

and U(X) x(q)(1q + q) (11)
vrq

The function
p, (x) = Zn\lk,(x)12  (12)

describes the electron density distribution along the chain (nA is the number indicat-
ing how many times (generally 1 or 2) the coordinate function 0,\ is included in the
determinant (7).

If we substitute (8) into (11) we get the following expression for the self-consistent
potential

U(x) 4X2 a pi(W (13)
W(I - S2 ) nvei)

where s = VI V. is the ratio of the velocity V and the sound velocity V..
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The exact self-consistent solution of the equations (8)-(9) isP

h2 7

u(x)= [,(x + W') + (14)
=Gxw' +A')e-•"A (15)

0.\(X) =ekU,,(x), u.%(x) A\ A(X + + w')

where 71 = C(w), ql' = C(w') and P(z), or(z), C(z) are P-, or-, and (- Weierstrass functions7 .

The elliptic Weierstrass function P(z) is doubly-periodic function with periods denoted
as 2w and 2w'. For the self-consistent solution these parameters equal to 6

7r U~r
W = 2-F' W (16)

where kF = 7rne/ 2 a is the Fermi wave number of free electrons, ne = NeN is electron
concentration in the chain, and K = xo/(1 - a2), K0 = 4mX2 a/h 2w.

Functions (15) are the eigenfunctions of the Schr&dinger equation (9) with a single-

gap periodic Lam6 potential (14) with A.% being normalization constants. The electron
state spectrum is given in parametric form by the relations

k = iC(A) - 1A],E h2 [2"- (' (17)

via the parameter A. In the electron spectrum there are two bands: the lower completely
occupied band for A = ia + w with energy E1 5 61 (or) _5 E 2 and upper empty one for
A = ice with energy -o(a) _! E3 . The parameter A is a double quantum number,
A = iai+pw, that determines the number of the allowed bands (p = 1,0) and the states
inside the band -either a or k in view of their one-to-one correspondence. The energy
band boundaries are E, = 2--[22ý - P(w,)], i = 1,2,3; 1 = w,w 2 = w + w',w3 = w' and

E 1 < E 2 < E 3.
Thus, in one-dimensional system of Ne electrons at zero temperature the electron-

phonon interaction results in a self-consistent Peierls periodic chain deformation with
the period determined by the first relation (16). Deforming the chain, the electrons
create for themselves a single-gap periodic potential (14) in which the second parameter
(imaginary period of the function P(z)) is given by the second relation in (16). The
energy gap, a single one in the electron spectrum, separates the occupied states from
the free sublevels. The ground state energy then gets decreased extremely. The total
momentum and total energy of the system will be equal to

(P) = (T'IIP1) = (m + ml)VN,, (18)

E = (*IHI*) - t-kF(- - K) + I(m + 2m,)V 2 ]N, (19)

* where
= 2hmkF 2  2 (20)WM V' -K_ 7 + Y2o

characterized the increase of CDW effective mass per electron due to the deformation

(92 is the invariant of Weierstrass function7 ).
In moving reference frame the CDW state represents the Peierls dielectric. In the

laboratory reference frame, the transition to which is given by the unitary transfor-
mation T(P) = exp (-iVPt/h), the wavefunction (5) describes the Fr5hlich "sliding-

mode" conductivity with total current I = eNeV generated by the motion of the CDW
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as the entity along the chain with velocity V. Using the formulae of the elliptic functions
theory7 , the electron density distribution along the chain can be written as

1 .+oo (21)
E cosh 2[iC(x Vt - 7rn/kF) (

n. ~[I lr-kF . nq"2 csk~ - Vt)] (22)
a 1- n=l q

where q = exp (-lrkF/x). The integration pi over one period 2w reveals that there are
two electrons per each CDW period. According to (21) the CDW represents a lattice
of periodically distributed Davydov's solitons (more exactly bisolitons). If inequality
.z > 1 is satisfied the bisolitons are strongly overlapped. In this case parameter q issmall, and the first term of expansion of expression (22) with respect to q corresponds

to the Fr~hlich approximation. When there holds the inequality -_z < 1, the distance
between bisolitons in CDW wiU be larger than its size. In this case the momentum
(18) and the energy (19) of CDW will equal respectively to the sums of momenta and
energies of Ne/2 noninteracting bisolitons s considered in Ref.5.

The current, flowing through the chain cross-section x = x0 , can be written in the
form:

jCDW = eVp1(zo, t). (23)

The expression (22) represents the Fourier cosine series and can be used for harmonic
analysis of the current, resulting from the CDW motion. As it follows, the current
consists of the constant term (JcDw) = enV/a and oscillating one, which is character-
ized by the fundamental frequency v = (jCDW)/( 2 e) and its harmonics v,, = vn with
amplitudes

4lrkFn
C. = (jCDW) xsinh(lrkFn/ic) (24)

Such current oscillations (narrow band noise) were observed in CDW compounds as
NbSe3 , TaS3 etc. (see for example Griiner's review3 ).
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INTRODUCTION

The rotational dynamics of the methyl groups in 4-methyl-pyridine (4MP or
y-picoline) have been thoroughly investigated using many techniques. The first Inelastic
Neutron Scattering (INS) experiments on 4MP showed a band near 520 peV / 4.19 cm-
which was assigned to the methyl tunneling transition.1 This is one of the highest fre-
quency ever observed for this kind of transition and a sixfold potential with a low barrier
was proposed. With a better resolution (- 15 gteV), this band appeared to be split into sev-
eral components.2 As well as the main band at 510 pWV / 4.11 cm"1, weaker bands at
468 geV / 3.77 cm 1 and 535 geV / 4.31 cm"1 were partially resolved. This splitting was
interpreted as being due to coupled pairs of methyl groups, as in lithium acetate
(CH3 COOLi.2H20 or LiAc). 3 However, further studies on isotopic mixtures of fully-
hydrogenated anQ fully-deuterated molecules have shown spectacular frequency shifts de-
pending on concentration and temperature which cannot be explained by coupled pairs.4

The sine-Gordon theory, however, when applied to an infinite chain of coupled methyl
groups gives a remarkably good agreement with the experimental observations. The main
band at 510 gteV was re-interpreted as being due to the transition to the first-excited trav-
eling state of the massive quantum particle referred to as a sine-Gordon breather. The
weaker side-bands correspond to in-phase (535 gteV) and out-of-phase (468 jseV) tunnel-
ing transitions for the chain. 4

It is widely accepted that partial deuteration of the methyl group lowers the symme-
try of the effective potential. The tunneling is removed. However, the traveling states of
the sine-Gordon breather are not expected to be destroyed. The frequency should be af-
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fected mainly by the change of the particle mass. Therefore, partial deuteration is very
useful to distinguish between the single particle and the collective rotations of the methyl
groups. In the present paper we present INS spectra of pure 4MP-ch2 d at various tempera-
tures. The observed frequency-shifts are consistent with the sine-Gordon theory.

INS SPECTRA

The INS spectra (fig. 1) reveal two components in the 450 IgeV / 3.60 cm"1 region.
At 2 K they are well resolved. At higher temperature the band at 388 jLeV / 3.93 cm-
merges progressively into the band at 436 g.eV / 3.51 cm"1. The frequency of this latter
band is almost unaffected between 2 K and 5 K. In addition, there is a weak band at
74 iteV /0.59 cm 1. Its intensity increases with temperature.

4MP-ch 2d
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S0.5 5.0K

0.4

,• 0.3
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0
-0.5 -0.3 -0.A 0.1 0.3 0.5

Energy transfer (meV)

FIG. 1. Inelastic neutron scattering spectra of partially deuterated
4-methyl-pyridine ch2d at various temperatures.

THE SINE-GORDON MODEL

The dynamics of the methyl groups in 4MP is that of an infinite chain of coupled ro-
tors.4 The Hamiltonian is :

where 0.. is the angular coordinate of the jth rotor in the one-dimensional chain with
parameter L. JVo is the on-site potential which does not depend on the lattice position and
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Vc is the coupling ("strain" energy) between neighboring rotors. When O - Oi is suffi-
ciently small, Eq. (1) is equivalent to the sine-Gordon equation:

= VW + 1 Cos W + ] (2)

The dynamics of this system are quite different and much richer than those of the sin-
gle particle or coupled pair. The rotational motions of the single particle, i.e., small oscil-
lations around the equilibrium position, become a continuum of roton states in the infinite
chain. Tunneling for the single particle gives an analogous collective tunneling for the
whole chain. However, in contrast to rotons, there is no continuum of states. Only in-
phase and out-of-phase permutations of the protons are allowed by the translational sym-
metry of the chain.

In addition to these collective excitations, spatially localized excitations may occur in
the chain. Analytical formulas are known for the kink, or soliton, and for the breather
mode, or doublet, in the sine-Gordon equation.4 In the ideal case, these excitations have
infinite lifetimes and behave like massive pseudoparticles traveling along the chain. Soli-
tons carry the mean position of the methyl groups from one minimum of the local poten-
tial (say 0 = 0) to another minimum (say 0 = 2r/3) and vice versa for antisolitons. These
pseudoparticles disappear at low temperature. The breather mode, on the other hand, is a
soliton-antisoliton bound pair (or doublet). At very low temperature, only breather modes
survive while the density of solitons and antisolitons vanishes.

Quantization of the sine-Gordon equation gives mass renormalization for the parti-
cles. In addition, the continuum of mass (or rest energy) states for the classical breather
turns into a discrete spectrum EB(I) characterized by the quantum number I. The number
of states depends on the potential periodicity : in the threefold case there is only one mass
state (l = 1) which is the ground state.

The breather mode behaves like a free quantum-particle in a periodic medium. Be-
cause of the translational symmetry of the chain, steady propagation can occur only for
discrete values of the energy :

1/2

Ed= [EB(1)+nn2"o , n = 0,:±1, ±2, • (3)

For low potential barriers the harmonic frequency hoc is not relevant. The effective
value hoY' depends on the mean-square amplitude for the internal oscillation of the
breather mode. ' The spectra reveal that the effective potential for partially deuterated
and fully hydrogenated methyl groups are very close to each other, both being amenable
to interpretation as sine-Gordon systems. 5

The in-phase and out-of-phase tunneling transitions are calculated at 341 geV /
2.75 cm"1 and 262 IteV / 2.11 cm"1, respectively. Therefore, the simple sine-Gordon
Hamiltonian [Eq. (2)] does not account for the existence of an additional band at very low
temperature in the breather mode region (at 436 1eV, fig. 1).

The splitting of the breather band is due to the removal of the threefold symmetry in
partially deuterated methyl groups. The Hamiltonian for an infinite chain of such particles
is:

1,= 1,4 + 0 1 -i cos6, + I[- Cos (6,4+1-x6p = 0, ± L (4)

V10 destroys the on-site potential symmetry. This term probably has two distinct

467



* physical origins the mean crystal field including long-range atom-atom interactions and
the local coupling wire librations of the whole molecule.

Vc is due to different potential energies for the non-bonded pairs (H-H, H-D and D-
D). In the sine-Gordon system this term may induce order for the methyl-group conforma-
"tions along the chain which can be either in-phase (0. - 0 = 0) or out-of-phase (0,+, -
0= 2xt/3) with regard to the local angular coordinate.

Vc = 0.25 cm- gives a breather mode splitting of 0.38 cm"1 / 47 ;LeV in agreement
with the observation. The chains can thus be described as a series of two different types of
ordered domains at very low temperature (fig. 2) ; one of the two bands corresponds to a
dephasing of ± 2x/3 for the methyl groups, while the domains where all the methyl groups
are in phase with respect to the local coordinates correspond to the other band. Since these
two bands are well resolved, breathers are presumably trapped in each domain and cannot
readily cross the border between two adjacent domains.

(a)

C

(b) "9"Vp

C[0

a,b

FIG. 2. Schematic view of chains of methyl groups in 4-methyl-pyridine ch2d.
Solid circles represent deuterium atoms. (a) In-phase conformation.

(b) Out-of-phase conformation.
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INTRODUCTION

In the recent years much attention has been devoted to find a mechanism for energy
transfer and localization in the DNA molecule, in particular in the context of the DNA
denaturation problem"12' 3. A first attempt to incorporate thermal effects in anharmonic
models has been presented by Muto et al.4 '3 who investigated the possibility of packets
of energy (solitons) being generated thermally at physiological temperature and the life-
time of open states, that are the precursors of full denaturation. The models presented
in these works were always dealing with a homogeneous DNA molecule. hI reality
DNA is a double helix built from two antiparallel linear polymers and the base in one
side is complementary to the base in the other side. Guanine is associated to cytosine,
adenine is associated to thymine, and they alternate in a random fashion. First sudies
of energy transfer in an inhomogeneous DNA molecule have been presented by Techera
et al.6 and Mtto6 . In the present work, we are dealing with the local denaturation of
an inhomogeneous DNA molecule.

THE PHYSICAL MODEL

The DNA molecule is described by two chains transversally coupled, where each
chain simulate one of the two polynucleotide strands of the molecule3 . Each of the
two chains is a spring and mass system. Each one of the N masses of the model
represents a single base of the base pair. The longitudinal springs, connecting masscs
of the same strand, represent the van der Waals potential between adjacent base pairs.
The transverse springs, connecting corresponding masses of the two strands, represent
the hydrogen bonds that connect the two bascs in a pair. Since it is assumed to
deal with an inhomogeneous DNA molecule, each particle in the mass and spring
system has mass Mn, aad the springs are assumed to be massless. For each base
pair the model includes four degrees of freedom, u,,, xn, and v,,, y,, for the two
strands, respectively. The u, = un(t) and vn, = vn(t), n = 1,2, ... ,N, denote the
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transverse displacemrients (displacement along he direction of the ly(hdogen Ibo d- i.
The x,, = x,,(t) and y,, = yt(t), n = 1,2 ,..., N, denote the longitudinal di•.laccrncit.,
(displacement along the direction of the backbone).

The anharmonic van der Waals potentials are described by the Toda potential.
Denoting by I the first strand, the anharmonic potential is given by

vT,(In - IL) = -. exp[-b,, (l, - 1L)0 + a (1,, - IL)

A similar expression holds for the potential of the second strand denoted by II. Ini
the above expressions, IL = 3.4 A is the distance along the helix axis between adjacent
base pairs; l' = V'(1L + xn,1 - xn) 2 + (un+l - Un ) 2 denotes the distance between two
bases in the strand I; a similar expression holds for l,: which denotes the distance
between two bases in the strand II.

The two bases in a pair are conneted through hydrogen bonds which are modelled
by a Lennard-Jones potential:

VLJ(t'. - IT + iH) == 4t+- -iT+lH)] (2)

The leught of the hydrogen bond between the two bases in a pair is given by t, - IT+ 11--.
Here t,, denotes the distance between two bases of the two strands and its expression is
given by t'n = ,/(IT + vn - U.) 2 + (yn - xn)n. Moreover, IT = 20 A is the equilibriiuii
distance between adjacent bases in a pair (the diameter of the helix), 1 1 -= 2 1/1'0 is
the equilibrium lenght of the hydrogen bond, and E,, is the Lennard-Jones parameter.
which gives the strenght of the hydrogen bonds between its paired bases.

By fitting the Toda potential to a 6-12 van der Waals potential and considering
experimentally measured properties of DNA, the following averaged values (the values
for the homogeneous chain') for the parameters are obtained: M =< M,, >= 6.41 x
10-25 kg, b =< b, >= 6.176 x 1010 m-1, a = 2.5635 x 10 1" N, 6LJ = 0.22 cV =
0.35244 x 10-19 N m, g =< En >= ELj/1O, and a = 4.01 x 10 -1 i.

The equations of motion for the system are obtained from the Hamiltonian

N

H = E [T,, + VTI(1,- - IL) + VTI(I( - 10 + VLJ(t - ,T+ l1]) (3)
n=1

The kinetic energy T7, is given by T,, 7M,,M (X2 + 2) + 1,,(&, + 2 )nd th

anharmonic potentials Vri(l, - IL), VT,II(l,, - IL) and VLJ(t,, - lI] + l) are giv"',

above. If we denote by d(0,' i 1.2,3,4, the displacement variables, ianiely d1,1' .-
d -n= u,, dn3 = y,, d = v,,, the equations of motion derived from the Hamiltoiiiall
(3) can be briefly written (for i = 1,2,3,4, and n = 1,2,...,N) as

M dki) - OHOd•2 .1

In order to describe the interaction of the system with a thermal reservoir at a finite
temperature T, a damping force and a noise force are added to the equations of lilotioli

(4) for the molecular displacement, namely

470) o) + 71o)(0 (5,
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Here 1 is the damping coefficient and rj(P(t) are the random forces acting on the bases,
with zero mean and correlation functions (71. (t) ql')(t')) = 2 Mj, k, T ,,6(t-t').
Then the equations of motion for the system of particles are given by the perturbed
version of system (4), namely

M, d() = aH _ Mn r d) + 7(i)(t) (6)

NUMERICAL RESULTS AND DISCUSSION

DNA is a double helix built from two antiparallel linear polymers and the base in
one side is complementary to the base in the other side. Guanine (G) is associated to
cytosine (C); they are linked by three hydrogen bonds. Adenine (A) is associated to
thymine (T); they are linked by two hydrogen bonds. We will consider (C) and (G)
as "strong" bases (S), and (A) and (T) as "weak" ones (W).

From a biochemical point of view, the denaturation happens when the two strands
of the DNA helix readly come apart, becouse the hydrogen bonds between its paired
bases are disrupted. This can be accomplished by heating a solution of DNA or
by adding acid or alkali to ionize its bases. The denaturation temperature depends
markedly on its base composition.

Here, we are mainly interested in the dynamics of an inhomogeneous closed strand
of DNA, with particular attention to the local denaturation. DNA sequences of .- o
following type have been considered

XXXX ..... XX WS WS ... WS WS XX ..... XXXX,

where X stands for W, S or H type (H corresponds to the averaged values of a
homogeneous chain).

The perturbed equations of motion (6) have been used to perform numerical stud-
ies. Concerning the values of the linear spring constant K = a b and the Lennard-Jones
parameter -, used in the numerical simulations, the following values have been consid-
ered: ,w-s = 0.1 N, ns-s = tcw-w = 29.9 N/m, and KH-H = 15.832 N, 6w = 0.823,
ES = 1.2 j, and 6H = e, where Kw-s, K.-s, KH-H and w1w-, denote the linear spring
constant K for W - S, S - S, H - H and W - W couplings, respectively; and EVw,
es and EH denote the Lennard-Jones parameter e for W, S and H base pairs withJ
previosly given.

In the present work we considered the dynamics of three inhomogeneous DNA
molecules, and we computed the corresponding hydrogen bond stretching in order to
compare with the case of a homogeneous chain.

The results are shown in figure 1. Here we have considered a chain with N = 64
base pairs. The inhomogeneous piece of the DNA strand was considered to be 23 bases
long with alternating bases of W and S type, WS WS ... WS WS. The homogeneous
parts on the left and right sides of the inhomogeneous one, were 21 and 20 bases long.
respectively, of S, M and W type.

The open states are divided into three bins. The first bin contains open states
with a life time shorter than 5 ps, which are not considered in the statistics. The second
bin contains open states with lifetime between 5 and 20 ps. The averaged values of this
group are plotted in figure 1 as open symbols. Finally, the third bin contains the open
states with a lifetime longer than 20 ps. These averaged values are plotted in figure 1
as full symbols.

Thus, it results that at physiological temperature, the therinal fluctuations of
the surrounding media cause the hydrogen bonds breaking. with a significant lifetime'.
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However, this does not imply that all bonds are permanently broken. Such a state of
full denaturation requires higher temperatures than the ones investigated here.

What is more interesting to note is that the presence of inhomogeneitiyes enhances
the hydrogen bond breaking, namely in the three cases of inhomogeneous DNA there
is a much higher number of open states: almost three times more for life times between
5 and 20 ps., and twice in the case of life times longer than 20 ps.
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Figure 1. Number of open states as function of temperature: with life-time between
5 and 20 ps. (open symbols), with a life-time greater than 20 ps. (full symbols).
Circles correspond to homogeneous chains; triangle to inhomogeneous chains with
prevalence of bases of Strong type; diamond are for inhonogeneous chains with bases
of Homogeneous type; and squares for inhomogeneous chains with bases of Weak
type.
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A PROTON PATHWAY WITH LARGE PROTON POLARIZABILITY

IN BACTERIORHODOPSIN

Jerzy Olejnik 1, Bogumil Brzezinski1 and Georg Zundel2

1Faculty of Chemistry, A. Middewicz University, 60-780 Poznan Poland2Inslitute of Physical Chemistry, University of Munich, Theresienstr. 41,
D-8000 Muinchen 2 (Germany)

With homoconjugated B+H...-B R-A B..'H + B hydrogen bonds the proton fluctuates
in a double minimum potential with a frequency larger than 1013 sec-1. With hetero-
conjugated AH-..B r- A*-..H + B hydrogen bonds with double minimum the fluctuation
frequency is slightly smaller but still very large. Calculations have shown that the pola-
rizability caused by shifts of the proton within the hydrogen bonds due to electrical
fields is about two orders of magnitude larger than polarizabilities arising due to de-
formation of electron systems. The same is true with hydrogen- bonded chains with
multiminima potentials. The presence of such hydrogen bonds is indicated by continua
in the infrared spectra. They arise since these hydrogen bonds strongly interact with
their environments caused by their large proton polarizability. Such bonds or hydro-
gen-bonded chains with large proton polarizability are indicated by such continual,2
(Fig 1).

0 o
11y

4000 3500 3000 2500 2000 1500 1000 o00
WAVENUMBEA lo,'-lj

Fig. 1 FTIR spectra of (---) 1,11,12,13,14-pentahydroxymethylpentacene, and (-) of its
tetrabutylammonium salt. (Taken from Ref. 3)
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The equilibrium in the AH..B r- A'.-.H + B hydrogen bonds is influenced very
sensitively by local electrical fields and by specific interactions due to their large pro-
ton polarizability. Thus, such hydrogen bonds can be used as molecular switches, for
instance in biology. Furthermore, such hydrogen-bonded chains with large proton
polarizability are very fast and effective proton pathways.

The bacteriorhodopsin molecule is present in the purple membrane of halobacte-
ria. If a trans-cis isomerization of the retinal residue R is induced by light absorption,
protons are pumped from the inside of the purple membrane due to a photocycle.
The intermediates of this photocycle can be stabilized [see for instance (4) and further
references there).

PROTON PUMPING AND CONDUCTION

We have taken Fourier transform difference infrared (FTIR) spectra from the
bacteriorhodopsin (BR) intermediates as well as from a modified bacteriorhodopsin
BRa intermediatesz with which the photocycle (Fig 2) is interrupted before the inter-
mediate L550 is built up.

OR 570 T

0.40KO

3 f) IiS

(N L5)

M412 "/
H.

Fig. 2 Fotocycle of Bacteriorhodopsin

Fig. 3a shows the FUR difference spectrum of BR 570 minus K6 30 . The spectral
changes observed with the K intermediate (negative bands) are mainly caused by the
trans-cis isomerization of the retinal. But in the K intermediate already a weak very
broad band is observed in the region 2800 - 2100 cm"1 indicating the presence of a
proton which is not well localized.

Fig. 3b shows the FTIR difference spectrum of BR 570 (positive) and L55 0 (nega-
tive). in the spectrum of the intermediate L550 a pronounced continuum is found
beginning at about 2800 cm"1 and extending toward smaller wave numbers. It demon-
strates the presence of a proton pathway with large proton polarizability in the L550
intermediate.

Fig. 3c shows the respective difference spectra of the modified bacteriorhodopsin
BRa. No continuum is observed demonstrating that no proton pathway with proton
polarizability is built up. This result is in good agreement with the observation that
the photocycle is interrupted with the modified compound before L550 is formed.

Fig. 3d shows the FTIR difference spectrum BR 5 70 minus M4 12 . In the M4 12
intermediate the proton has already left the membrane at the outside. With M4 12
(negative bands) a continuum is founid no longer. Instead of them a strong asymmetri-
cal band is found in the region 2700 - 2300 cm-1 and a weaker band in the region
2000 - 1700 cm"1. They indicate that with M4 12 strong asymmetrical hydrogen bonds
are formed in the active center of the BR intermediate M4 12 .
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Fig. 3. FTIR difference spectra of the photo intermediates, a) BR5 70 minus K(630, b) BR5 7 0
minus L55 0 c) BRa570 minus the BRa intermediate under the same conditions as in
the case of hR in Fig.b, d) BR 5 7 0 minus the intermediate M 4 1 2 . (taken from ref. 5)

On the basis of these results, CPK model building, and literature data5 1 1 me fol-
lowing picture of the proton pumping and conducting mechanism can be developed.
The structural formula (Fig 4) shows two proton limiting structures of the structure
which is probably built up in the L5 50 intermediate. The hydrogen-bonded pathway
with large proton polarizability starts at Arg 82 and extends via tyrosins and probably
structural water to the outside of the membrane. The proton potential between the
Arg and the first Tyr residue is, however, still relatively asymmetrical. Thus, the excess
proton cannot be removed at the outside of the pathway and transfer into the water
phase.
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Fig. 4 Left hand side, two proton limiting stuctures of the proton pathway of the L5 5 0 inter-
mediate of Bacteriorhodopsin. Right hand side, structure of the intermediate M 4 1 2 .
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From work of Siebert7 and Gerwaert and HeB8 it is, however, known that in the
L to M step a proton transfers from the Schiff base to Asp 212. Furthermore, it is
known from works of Rothschild's group 9 that in the same step a proton transfers
from Tyr 185 to Asp 85. We know, according to our investigations with model sys-
terns that these both hydrogen bonds may show large proton polarizabilityl 0 " 1. Thus,
the protons can easily be shifted within both hydrogen bonds by changes of local fields
or specific interactions.

As described above in the step L to M two negative charges in the neighborhood
of Arg 82 are neutralized. Thus, the protons in the hydrogen-bonded pathway are
shifted to the outside and the last proton can transfer to the water phase. With M4 12
the continuum is no longer observed since the hydrogen bonds in the chain are now
asymmetrical and hence they show no longer proton polarizability (Fig 4). One observes,
however, the bands of the very strong asymmetrical hydrogen bonds now present in
the active centre.
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THEORETICAL INTRODUCTION

In Davydov's theory, one dimensional sub-systems within molecular crystals may
exhibit self-trapping of some high frequency phonons as these travel by dipole resonance
interaction, due to coupling to some specific soft oscillation model

This phenomenon should be particularly evident in hydrogen bond chains and
therefore has been proposed as a possible mechanism in order to explain energy storage
and transport processes in biological systems 2,3. In fact, due to the large deformability
of the hydrogen bonds, a high frequency excitation, such as amide I, could be able to
induce a distortion within its environment, allowing for the excitation to propagate,
dressed by phonons, without dispersion.

Interpreting the vibrational exciton-phonon coupling x parameter as related to the
extent of lattice deformation involved when the high frequency excitation at a given
lattice site occurs, a coarse grained evaluation can be gained using semi-empirical force
fields to model interatomic forces. Adopting this point of view, we decided to perform
some tentative calculations using acetanilide (ACN) molecular crystal as a model, for
which infra-red absorption spectrum is well known.

Since ACN is structured in its solid phase by hydrogen bonds connections, linking
the peptidic groups through the crystal body, it is a suitable compound to check if
trappin ; process is supported.

Moreover, it can be regarded as a structural model for the spines of hydrogen bond
chains stabilizing the at helical structure of proteins and according to A.C.Scott and
G.Careri, Davydov-like solitons due to peptidic C=O vibrational excitation, can form
and propagate over a threshold energy value.

Thus our work consisted in devising a numerical procedure for inspecting ACN
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crystal modes, or combination thereof, possibly involved in Davydov-type self trapping,
as C =0 atomic group is brought to its first vibrational excitation level.

Setting up our computational device for simulations, based on the extensively
employed Molecular Mechanics approach, we adopted MM3 force field, described later,
being successfully employed in matching geometrical features and related energy
differences, for crystal structures. Then an additional experimental parameter was added
to the parameters deck, by introducing C = 0 transition dipole moment as due to a change
in point charges and charge separation within the amidic group.

We consider an equally spaced chain of mass units representing the center of mass
of the ACN molecules, connected through a force constant w, each unit being provided
by an electric dipole moment 1A. associated to the C =0 group, and describe the classical
dynamics of the system through displacements vectors u.(t) from the equilibrium sites,
by defining the conformational coordinate r.:

r.(t) = u.+,(t) - uX() yyt (1)

Following Davydov's theory, when a single C=O vibrational excitation is
introduced into the chain, interacting by dipolar resonance J with its nearest neighbors,
the hamiltonian describing the one dimensional system can be written:

H = H.X + Hvib + Hi. (2)

H. = E. (eo - D,)BBIB. - J E. (B1+IB. + BIB.+I)

H,• = (1/2M) E. (p. - p.+1)2 + (1/2)w E. r.1

Hit= XZ,, r,,(BIB,)

in which Hvb represents the low energy deformations in the conformational
coordinates r. and canonical conjugated momenta p.; Hex describes the high frequency
excitation via the creation and annihilation operators BI , B. of the C=O excited state
at site n, eo being the energy of excitation in the isolated unit and D. standing for
corrections to be applied to eo to account for the environment; Hi,, controls the mutual
influence of the two above degrees of freedom via the constant X.

Solving the Schr6dinger equation with the continuum limit approximation, soliton
solutions can be obtained, besides the ordinary exciton ones. The energy difference
between the two kinds of excitations is shown to be a function of their respective
velocities and the maximum is reached when they are at rest:

&E = E.oI(V=O) - Eex(V=0) = X4 / 3w 2IJI (3)

Scott and Careri4 proposed to evaluate the soliton stabilization energy AE
considering the discrete solution for the hamiltonian (2) and assuming that soliton
solutions and low frequency modes are both strictly localized on a single site, thus
obtaining:

AE = X2 / 2w (4)

Equations (3) or (4) indicate that, in a one dimensional lattice, solitons can form
only for sufficiently high values of the non linear coupling parameter X and for low
values of the intermolecular force constant w. Both these ingredients are usually found
in chains of hydrogen bonded molecules, which can be therefore considered as systems
apt to support the spatial propagation of solitons.

To compute the above parameters Careri4 follows an experimental approach,
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evaluating x through the equation:

X = d( hi, )/dr (5)

in which hs. is the C=O high frequency energy and r, the low mode conformational
coordinate, has been chosen to represent the hydrogen bond length. Then the
experimental value of the coupling parameter x for ACN crystal can be determined by
examining the change in C=O stretching frequency (vc-o) as a function of the hydrogen
bond length (rN::O) in a series of related molecules. This yields

X = h'd(vc.o)/drN::o = .62x10-10 N. (6)

Finally, assigning the splitting AE observed in the low temperature infrared
absorption spectrum of ACN to the existence of both excitonic and solitonic excitations,
the elastic constant of the low frequency motion involved can be computed from (4) as
w = 4.8 N/m, which indeed appears to be a reasonable value for hydrogen bond
bending constant'

We point out that, in the approximation of sharp localization described above, both
high and low frequency coupled modes are localized at the same site, while the original
version of Davydov's theory implied a self-trapping dynamics as involving a lattice
deformation spread over several sites.

In order to check if the same order of magnitude for the splitting AE can be
obtained when effectively considering the center of mass positions as conformational
coordinates and allowing the deformation to involve a larger extension of the chain, we
set up a computational device for simulating the occurrence of a vibrational excitation in
a crystal structure.

NUMERICAL MODEL FOR ACN

The energy function used in our calculation is in the form E = E.d + E-O,,, in
which t evaluates the energy contributions due to the covalent structure distortions
from a given ground state configuration and E,,,b, accounts for non-bonded interactions
such as electrostatic, Van der Waals and hydrogen bonds forces.

The general form is

Eb = (l/2)E[ qiqj/Errj + Bijexp(-IOrj) - Aijrij6 (7)

Fbood = (1/2)E[ Kj(1-1o) 2 + K0(t9- 0 o)2 +

+ V,(l+cos(7) + V2(1-cos(2y) + V3( +cos(3-y),)

in which l,t9,-y are bond length, bond angles, dihedral angles respectively, and subscript
o indicates the conformation to which zero energy has been assigned; ruj is the distance
between the i-th and j-th particle, qi, qj are the atomic charges and Er is the effective
dielectric constant.

The energy function above described was parametrized by using MM3 force field7-
12, which has been successfully tested on molecular crystals and amides8,9.

Starting from crystallographic data13 a 1-dimensional chain of 13 units was set up;
the 5 inner units was then relaxed with no lattice symmetry constraint, using energy
optimization routines14.

Inside this free hydrogen bonded segment of 5 units the central was considered
(fig. l).
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First the elastic constant due to the total energy E(r) of the system was obtained

using the relation

w = 2(E(r) - E(ro)) / Ar2  (8)

assuming that Ar is the change in the center of mass position of the central unit for a rigid
tranlation of a molecule along the chain (Y) axis.

Vibrational excitation of the C=O unit following the absorption of an infrared
quantum was simulated using the dipole transition moment dp = 0.034eA taken from
experimental infrared intensities data. Writing djL as

d/A(q,rc-o) = qdrc.o + rc-odq (9)

in which rc- 0 is the C=O bond length, the simulation of the excited state can be
obtained by a suitable rearrangement of charge distribution q and separation in the amidic
group.

11 13 9 7 5 3 1 2 4 6 8 12 10

Figure 1. One dimensional arrangement of acetanilide molecules connected by hydrogen bonds between
peptide units, used in our computations. C=O excitation has been located at site 1.

The stretching of the C=O bond, drc=o, due to excitation, was evaluated by
considering the separation between the position of the maxima of the probability density
function in the ground state and first excited state for an harmonic oscillator, yielding

drc-o = ±0.055 A, (10)

representing the elongation of the C=0 bond during the foundamental vibration.
Finally a change in the charge distribution followed, according to the experimental

value dp&5.
The simulation of Cf=f0 excitation was applied to the central unit (N. I in fig. 1) and

the crystal with such modifications, was again minimized in energy with respect to all
atomic coordinates [See Table 1].
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Table 1. Lattice distortion, due to C=O excitation at unit 1, evidenced through the

change in hydrogen bond angle dB and length dl along the chain direction.

C,-=1 e=f3 t-4 C-1i 0

'* HN::01.2 d0(de.s.) 0.6 9.2 -5.9 1.5
idi (K) -.001 3.051 .010 -.012

dHN::O3-e dges.) -1.0 3.6 -5.9 0.7
di (K) .003 .013 .018 -.008

HN::4O.2 d.g.) 0.8 1.0 2.2 -4.5
di (K) .002 -. 001 -.006 .013

HN::03.5 d#(d. 8 .) 0.1 0.0 -1.3 -2.3
dl (A) .000 .003 .004 .002

HN::05-7 d,(dcg.) 0.2 2.9 1.0 -0.9
di (A) -.003 -.007 -.009 -.010

HN::0 6 - 4  d#(deS.) 0.5 4.1 4.7 -0.5
dl (A) -.002 -. 009 -. 014 -.005

Since the interaction between the high frequency C=O stretching motion and the
low frequency hydrogen bond motion is considered in hamiltonian (2) only to the first
order, the effect of this coupling results in a shift of the parabolic potential energy
function along the deformation coordinate, without changing its curvature. Therefore the
coupling parameter can be written as

X = w-(r*-r) (11)

in which (r*-r) is the shift of the centers of mass due to the relaxation of the excited
system.

From the knowledge of X and w, we were able to derive, within the framework of
Davydov's theory, the stabilization energy of the soliton by equation (3), which could be
possibly detected through spectroscopical observations:

AE = X4 / 3w2jJ1 (12)

in which J is the dipolar resonance interaction between unit I and 3. It is given by

J = (l/R)[(d,-d 2)R2 - 3(d,'R)(d2"R)] (13)

Where d,,d 2 are the electric transition dipole moments. In our case&6:

IdI = Id21 = 0.24 Debye = 8.Ox10-31 Cm (14)

By orienting the dipoles along the C=O bond directions in units 1 and 4 and by
taking R as the vector connecting these bonds, we found J = -8.16x10-23 Joule = -4.12
cm-'.

RESULTS

In order to bypass non-stationary points in the potential energy function, several
chain models was considered, by optimizing different starting configurations, using

481



different minimization algorithms12,14 and analysing different environments by changing
the value of the dielectric constant.

In Table 2 we summarize the relevant parameters involved in the formation of the
solitonic excitation, indicating for every value of the dielectric constant the result of
several simulations.

Table 2. Relevant parameters in order to evaluate vibrational self-trapping conditions in
different models.

ode1 2 3 4

1 3 4 10
w 180 N/m 126 N/m 118 N/m 125 N/m
Ar .oo2 A .012 A .032 A .035 A
x .36x 10'ON 1.51x 10"I°N 3.76x 101 °N 4.37x1O 1 0 N

The obtained values for X, using E=1, appears to be consistent with the
experimental value as fitted by Careri for C=O vibrational excitation coupling to
hydrogen bond lengths, obtained collecting crystallographic and infra-red absorption data
of several hydrogen bonded chains in molecular crystals4.

Due to the high sensibility of the numerical evaluation of Ar and w from the
ground state assumed in the molecular mechanics model, a better refined parameters deck
should be used in order to get quantitative predictions about deformation induced within a
given structure.

Despite the match with experimental data, results ar not at variance with previous
computations' 7, performed with a different force field, indicating that a simple rigid
translation of molecular units along the chain axis could not be able to give rise to self-
trapping of C=O vibrational excitation, as suggested in the original form Davydov's
theory, since stabilization of the soliton solution with respect to the exciton one is
vanishing, being evaluated as AE = .04 cm-1 according to the relation (3) or
AE = .35 cm-' when the approximation of sharp luoalization (equation (4)) is made.

In these conditions the soliton solution spreads over the whole chain, loosing its
localization feature and coincides with exciton.

In Davydov's theory, the only degree of freedom we can consider is the rigid
translation. Yet, in a real chain, as one can see from fig.2, the change in length between
centers of mass is not the only effect induced by the excitation since rotations of the
ACN units can also occur. A softer force constant could be associated to this latter !mnd
of motion or to a flip-flop motion of the proton of the hydrogen bond, between two
equilibrium positions, as suggested by A.C.Scott, making energetically advantageous the
soliton formation.

It should be also posssible that a several modes combine together to give rise to sel-
trapping, but evaluation of parameters related to these latter modes could be carried out
only within a model including inter-chain interactions.

Moreover we notice that the induced displacements appear to be different in extent
in forward and backward directions suggesting that two different coupling parameters
X+ and X- should be considered in the hamiltonian (2)18

It has been proposed' 9 that a Davydov-like self-trapped propagation can take place
along the spines of hydrogen bonded peptide groups which stabilize the quasi-periodic a
helical structure in proteins.

According to Scott2 °-22, in the a helical structure of proteins, threshold value for
coupling should be xth=.45xlO"Io N. Although the estimated value is close to the latter,
the rigid rearrangement of peptidic units seems unable to follow the C=O excitation
along the hydrogen bonded spines.
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Figure 2. Schematic response of the one dimensional lattice to the introduction of a C=O vibrational
excitation localized at site 1. Shifts in centers of mass occur mainly in the YZ plane; their value has been
scaled by a factor 103
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HIERARCHY OF NONLINEAR DYNAMIC MODELS OF DNA

Ludmila V.Yakushevich

Institute of Cell Biophysics
Russian Academy of Sciences

Pushchino, 142292 Russia

INTRODUCTION

DNA is a biological polymer which plays an important role

in the conservation and transportation of genetic information
The number of theoretical models describing nonlinear proper-

ties of DNA is rather large. So, whenever we want to describe
the nonlinear dynamics of some biological process involving
DNA, a problem of correct choice of appropriate nonlinear
model appears. It can be solved if we conceive the principle
of internal logic connection (or hierarchy) between the mo-
dels. In this work we propose a simple model of the hierar-

chy.

When consi-ructing the dynamic hierarchy, we shall take
into account that the nonlinear dynamics is only a part of
the general dynamics, and the latter is strongly correlates
with the structure. In other words, there is a correlation
between the hierarchies of the structural, dynamic and
nonlinear dynamic models of DNA. Therefore, it is convenient

to begin with the constructing of the structural hierarchy

and then pass to the dynamic one.
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HIERARCHY OF STRUCTURAL MODELS

The first level. The simplest structural model of DNA is

prompted by microphotos of the molecule where it looks like a
thin elastic filament. So, in the first approximation it can
be suggested that the uniform elastic rod with a circular
section is the simplest structural model of DNA1

The second level. A more complex structural model takes
into account that the DNA molecule consists of two poly-

nucleotide chains interacting with one another by hydrogen
bonds. Each of the chains can be modeled by an elastic

uniform rod with a circular section. So, the complete model
consists of two elastic rods weakly interacting with one

another and being wound around each other to produce the
2double helix

The third level. The next level model takes into account
that each polynucleotide chain of the DNA molecule consists
of three types mutually rigidly bound atomic subgroups (the

bases, the sugar rings and the phosphate-carbon backbone
pieces) with relatively weak and flexible bonds connecting

them with each other3.

The fourth level. The fourth level of the hierarchy can be
formed by the so called lattice models where a finite group
of atoms (named nucleotide) forms a "unit cell" periodically

4repeating along the DNA molecule.

The fifth level . The fifth (or the highest) level of the
hierarchy is apparently formed by the most accurate struc-

tural model taking into account position of each atom of the

DNA molecule.

HIERARCHY OF DYNAMIC MODELS

To construct the hierarchy of the dynamic models let us
assume that the models described above are not static but
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dynamic ones, that is the structural elements of the models

are movable. To describe their motions a system of corres-

ponding differential equations can be used. So, instead of a

set of structural models described above, we obtain a set of

systems of differential equations, and these systems form the

dynamic hierarchy.

To illustrate this statement let us present here two

examples. The first is the system of differential equations

corresponding to the first level of the dynamic hierarchy and

describing longitudinal, torsional and bending motions in the

rod-like model of DNA. In the general case this system has

the following form

PUtt= Yuzz + nonlinear terms5+ coupling terms, (I)

iutt= CYzz + nonlinear terms + coupling terms, (2)

Spytt=-Byzzzz + nonlinear terms 6+ coupling terms, (3)

where u, p and y are the longitudinal, rotational and trans-

verse displacements of the unit element of the rod placed

near the point z at the moment t; p, i and S are the density,

the moment of inertia per unit length and the cross-sectional

area of the rod; Y, C and B are the Young's modulus, the

torsional and bending rigidities.

The second example is the system of differential equations

corresponding to the next (second) level of the dynamic

hierarchy and describing the longitudinal, torsional and

transverse motions in both DNA strands. It consists of six

differential equations. For simplicity, only two of them are

presented here in the explicit form. They describe the

torsional internal motions in the double rod-like model of

DNA
2

Mu. .tt .= .............................................. , (4)

Mu2 t = .. ................ ............................. , (5)
2tt

I(1 = ka 2 V + a[2sinpI- sin(Pl+V2)] + coupling terms, (6)
tt zz
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IV2tt ka2P2 + a[2sinV2 - sin(',l+f2 )] + coupling terms, (7)

My tt .= .. ................. ............................ ,(8)

MY2 tt= ................... ........................... .(9)

A set of the systems of nonlinear dynamic equations could

be continued by the same method and higher (the third, the

fourth and the fifth) levels of the hierarchy could be con-

structed.
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INTRODUCTION

We consider a variant of a simple, proto-typical model for biological evolution sug-

gested by S. Kauffman [1, 2, 3, 4]: the co-evolution of abstract haploid organisms with

a single copy of chromosomes. Evolution in this model is driven by random mutations
of individual genes. Each species evolves in a fitness landscape which represents those

aspects of its environment that remain unchanged on the tine-scale of evolution. The
fitness of any species depends on its position in its fitness landscape and on the state of
other species. Species are, so to speak, part of each others effective landscapes. These

may therefore change with time as species evolve.
It has been suggested [3] that this so-called NKC-model self-organizes dynamically

to criticality [5] and thereby provides a simple model for the intermittency of extinction

events observed in biological evolution by Raup [6]. The purpose of our investigation
of this model is to demonstrate its capacity for self-organization to criticality, if it is
there in the model. This article reports on some progress towards this end, in-as-much

as we show that the first prerequisite, critical behaviour, is there in the model. We may
hope then that a more realistic version of the model, suggested by our results, may

self-organize to criticality. Whether this is the case, is not addressed here.
The letters N, K, and C in the model's name denote parameters for, respec-

tively, the number of genes in the evolving organisms, the roughness of their fitness

landscapes, and the strength of their mutual dependence. We study the model with
maximally rugged fitness landscapes, obtained for K = N - 1, so K does not occur as
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an independeLit parameter in the present article. We demonstrate analytically that it

possesses two phases, one phase with dynamics governed by attractive fixed points, and
another phase with chaotic dynamics. The phases are separated by a critical line in
the (N, ()-plane at C - N/log N. We have obtained closed expressions for the asymp-
totic dynamical activity of the system. This quantity turns out to be a natural order
parameter for the system. We have also obtained closed expressions, valid anywhere in
the two phases, for the system's relaxation time towards its asymptotic behaviour.

Some of the analytical results we discuss below for species evolving in isolation have
been seen in numerical studies [7, 8], and derived in [9]. They represent a natu:al first
insight, and are included to make the presentation self-contained. Different but related
results have been obtained for the NK-model with general K >> I in [10].

In the present article, results are derived in a heuristic manner. In this way we,
h,,pefully, give the reader a qualitative understanding of the dynamics of the NKC-
model. Stringent derivations and technical matters were given in [11] and [12], which
we shall refer to as article I and article II.

THE SYSTEM

We consider an ensemble of mutually dependent and evolving species, an ccosystem.
At any time, the state of any species is given by the state of its genome. This genome
contains N genes. We shall assume the genes are binary variables, i. c. there are only
two alleles, A = 2. We do not expect our results to change in any significant way if the
number of alleles is changed, as long as it is small compared with N in results based
on expansion in 1/N. We do not distinguish between phenotypes and genotypes, and
also neglect variations in type within a species. In real life, variation is responsible
for the very existence of evolution. In the NKC-model, however, only this consequence
of variation is modelled: evolution takes place, and is driven by a constant rate of
mutations of individual, randomly chosen genes. If a mutation increases the fitness of a
species, it is accepted, and the entire species is changed. If a mutation does not increase
the fitness, it is rejected, and the species remains unchanged. Tie situations, with two
genetic configurations having the same fitness, do not occur (have measure zero), due
to the way we assign fitness to genetic configurations: If the time-scale that selection
works on is much faster than the time-scale for mutations, this lends some justification
to our "all or nothing" dynamics neglecting variations [13]. Proliferation and extinction
of species are both neglected in the present article, though the model could be adapted
to accommodate their description.

The fitness f of any of the evolving species is a random function of its N genes
and of C other genes belonging to other species 1. These C other genes are chosen at
random among the genes of other species. For a given sample of the kind of ecosystem
described here, the particular choice for these C genes and the random fitness function
define the sample, and remain fixed during evolution - the randomness is quenched.

The particular probalbility distribution p(f) used to define the fitness function
does not matter; we shall not even bother to introduce it in our considerations below,

'At this point we differ slightly from Kauffman's own definition of the NhX-model. He defines the
fitness function of a species as the sum of N random functions, one for each gene, depending on the
gene and on K other genes in the species plus on C genes in other species. For K = N - 1, a species'
fitness function is therefore an entirely random function of the N genes in the species, but a rather
correlated function of the foreign genes it. depends on. There is no good reason that the fitness function
should be this way; it is just an accidental consequence of its parametrization. So for convenience we
have simply assumed that the fitness func ion is a random function of all its variables.
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because it turns out that it disappears again by a transformation of variables to F
f._ df' p(f'). In the case where p is uniform on the interval 0 < f < 1, we have
f = F. So for convenience we shall refer to F as the fitness, although F in tile general

case really denotes the probability for fitness less than J. The elimination of ;(f) in
equations expresses that the value f of tile fitness is irrelevant; only the probability F

of being less fit matters.
We have two reasons to consider random fitness landscapes; the first reason is a

conjecture, the second is proven correct in articles I and 11:

1. Evolution in any fitness landscape having an effectively finite correlation length,
will, when viewed at sufficiently coarse-grained scales of time and space (configu-

ration space, i.e.) look like evolution in a random fitnesý' landscape. So evolution
in a random fitness landscape describes the large-scale behaviour of evolution in
a large class of landscapes. Consequently, with this choice of landscape we are
avoiding the particilar, while treating a quite general case.

2. It is technically convenient: the absence of correlations allows us to derive a
number of analytical results.

Notice that from a mathematical point of view, N might as well be the number
of positions in the primary sequence of a protein, with A = 20 denoting the 20 amino
acids that potentially could occur at each position. Or A = 4 could denote the 4
nucleotides possible at each site in a DNA sequence of length N.

Alternatively, we may think of the N genes and their A alleles as N Potts spins and
their A possible values in an A-state Potts model. With V = -f. denoting the encrgy
of a spin-configuratioll, we recognize in each species a sample of Derrida's random
energy model [14, 15], and these samples are asymmetrically coupled to each other for

C # 0. In this language, the dynamics of mutations described above is the random-site
Metropolis algorithin at zero temlperature.

ESTIMATING THE LENGTH OF WALKS

Evolution traces out a path in configuration space. At each time step, the p)ath is

either extended one step from its current enld point to a nearest neighbor - when a

mutation leading to higher fitness is offered to and accepted by evolution or the path
is not extended - because a mutation leading to lower fitness is offered and rejected.
This path is often referred to as an adaptive: walk.

In this section, we are not concerned with the temporal aspects of evolution, but
only with the length e of adaptive walks. This limitation simplifies the description a
good deal. In subsequent sections, teml)oral aspects are treated.

Before we get involved with mathematics, let us estimate the average length of

adaptive walks, and the average fitness they lead to. The qualitative p)icture thus
obtained is confirmed by rigorous calculations in article I.

We assume N is large. The dimension of configuration space is N. We assume the
length of adaptive walks is much smaller than v'N, and find this assumption consistent
with the results it leads to. Since the walk proceeds by random mutations, it p)roceeds
in random directions in configuration space. There are many more directions than
there are steps in the walk, by assumption. So each step in the walk has a different
direction. In each step of the adaptive walk, the fitness F is increased. The value

it increases to, is uncorrelated - to leading order in 1/N; see article I - with its
previous value, except it is larger, of course. Consequently, in each step I - F is halved,
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Figure 1: Qe versus e for N = 10 (o), 100 (V), 1000 (A), and 10,000 (0). The
connecting dashed lines are only meant to guide the eye. Poisson distributions with the
same mean values are shown with the symbol e. In the case of N = 10, the Gaussian
distribution with same mean and variance as Q1 is shown as a solid line.

on the average. Thus, starting the walk with F = 0, after e steps the average fitness
is I - 2-'. An adaptive walk stops when all neighbor positions have lower fitness than
the current position. Since fitnesses are random and uncorrelated, this happens when
N independent random numbers happen to be smaller than F. On the average, this
occurs when 1 - F - I1/N. This is our estimate for the average final fitness, and, setting
1 - F - 2-', we have an estimate for the average length of an adaptive walk:

e 2- log NI log 2(1

In the derivation of this resu%, we neglected correlations between fluctuations around
the averages that we worked with. They do not change the logarithmic dependence on
N in Eq. (1), but do change the coefficient of log N; see article I.

In addition to a more precise result for the wverage length of adaptive walks, we
want to know the p)robability distribution Q, for f. In [81, "long upper tails containing
little probability" were seen in numerical results for Qt. So one may wonder whether Qt
decreases as a power of e at large e, or faster. In article I, it is shown that (Qe)e=o,0,2....
is a Poisson distribution to leading order in I/ log N; see figure 1.

ESTIMATING THE DURATION OF WALKS

Since we let the adaptive walk start out with fitness F = 0, the probability Q0 that
it is at a local fitness maximum at time t = 0 after the first step is

Qo = I/N (2)

This is a rigorous result.
On the average, and to leading order in 1/N, each step taken, including the first,

reduces 1 - F by a factor 2. Each step thereby doubles the probability that the ensuing
step will be the last, while it halves the probability per unit of time that the next step
is taken. Consequently, the probability per unit of time for the walk to terminate is
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Figure 2: NQt versus tIN for N = oc. Fully drawn curve: exact result from article 1.
D u.. *urve: estimate from Eq. (3) with exact value for t taken from article I.

constant during the walk. This means

Q, = -rexp(-t/i) (3)
t

Using the exact result in Eq. (2), we have the estimates

t=N (4)

and
and= -I exp(-t/N) 

(5)
N

This last equation shows that NQ, remains a finite function of tIN in the limit N o oc,
and its k'th moment is proportional to Nk. In particular we see that the standard
deviation

a(t) = N (6)

scales like the average t. This is in contrast to the scaling laws found for the average
length of walks and its standard deviation; see article 1.

In article I it is shown how this section's estimates are modified when one accounts
properly for fluctuations and their correlations. The result for NQ, is shown in figure 2.

MASTER EQUATION

Because each species evolves by mutation of randomly chosen genes in a random
fitness landscape, its path of evolution through configuration space can be replaced by
a random walk, to leading order in N [I I]. This result causes vast simplifications in the
description of the system's dynamics, which, on the other hand, is exact then only to
leading order in N. But that is a small price to pay, as we imagine N is large anyway.

We include two additional simplifications in the description: instead of keeping
fixed the C randomly chosen foreign genes that any species depends on, we re-choose
them at random any time we need them, i. c. we exchange "quenched" randomness
for "annealed". If the total number of species in the ecosystem is effectively infinite
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and this assuimpt iol is the second simiiplification we add to the (lescript lion then
there is no difference betwec,. results based oi quienichied and an,,ealed randlomess.

This is because the set o; decies that any species depeiids oi. directlv or via other
species, forms a (-bra .led tree with each node of the tree representing a species and
each oriented branch a dependency [16. 17]. So while our exchange of quenched for
annealed randoniiiess amounts to it nIean-tield alproxxinIatioll, we nlevertheless expect
the mean-field theory to he exact, becauise the system effectively is infinite dimensional
throighI its random connections.

lhe second assumption, an eftfectiwvly infiniite nuliber of species ill the ecosystem.

makes a description in teriis of dinsity fiictiol|s possible: let p(•I(F;l) deiiote tlhe
relative number of species which have fitiess F and Al less lit one-,initant neighbors at
time L. A change in a random gene will theln lead to higher fitness and therefore he
accepted - with prohahility

N

A(t) =y(I - MIN) (I ,FpA I( F;t(7

because 1 - M/N is t ie prohalbility t hat the change of one random gene leads ito higher
fitness in a species which has .1! hlss fit oiie-init aliti neighbors. N\e, note that At() also
is the rate at which Imitations are accepted 1) t lh(e ecology froin the constant rate of
mutations offered. So A(1) is a itascire of tlhe evolutionary activity ill tilt' ecology. We

shall find it a useful quantity itelow, and refer to it as the cti,,ity.
The probability that such a imutation is accepted and results in litiness F for the

changed species, is

where
I '\

o( F':I) -1-F' - (I - .l/N)pm (F': ) (9)
.-P I=tt

is the contribution to this p)rolbahility from species with fit ness F'. This contribution
does not depend oon F as long as F > F'. This is so because we have assiiied the fitness
landscape is uncorrelated. 'Ilie factor 1/(1 - F') ill this expression is the normalization
factor for the constant distribution for F withl F > F'.

With this notation we can write down tile master equationi for PAY ( F; t):

pI(F;1 ) -(1- -- )pMI(F;I) + B,% ..v(lF), ( F;t)

-- A()PAI( F: 0) + -A(t)B.I.(F) (10)
A, N

This non-linear i ntegro-differenltial equiat it0i expresses that t lie relative nuinber of species
with fitness F, and Al less fit l-imitant ieighbors, changes fto" foir different reasons.
corresponding to the four terms oii the right-hand-side of Eq. (10). The time-scale in
Eq. (10) has ])evil chosen such that in oilie unit of time one Imitation is offered per
species - to be accep)ted or rejected.

The first tern on the right-hand-side of Eq. (10) is the rate at which species with
fitness F, and Al less fit neighbors, imitate to higher fitness.

The second term on the right-hand-side is a rate of change of less fit species into
species with fitness F and munber of less fit neighbors Al. The function BAfN(F) is
the binomial distribution with mean F:

B',N(F)- N! FA (I - F)N-At(11)
AV! (N - Al)!
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It represents the tprokalbility that A) out of A oue-iitittaiit ieiglhlbors to a geloilie w:,'II
fitness F are less fit than F. This probability is hi noiiiially distributed because the
fitness landscape is random, with fitness F eqIiilistribluted in the interval [0, 1] '.

'Flie third terin is a rate of loss of species with fitness F, Al. This loss is not caused
by a change in the genes of the species lost, but by a cliange iii its fitness due to genetic
changes in other species. Since the ( genes in other species that any species depenlds
onl, are randomly chosen, this change is the product of the prolbability A(t) ti It a
mutation iin a randoin species is accepted and the probability C(/NpA(F;t) that the
i'eite it occurs in is a gene oil which a species with fitness F, A! dependls.

The fourth term oii the right-hand-side of Eq. (10) is, like the second term, a rate of
change of species into species witli litiness F, Al. It compplmeints the third term: species
that change fitness dtie to genletic changes in other species, can ch•ange their fitness to
F with eqluidistributed F. When they have done that, they have A/ less fit neighbors
with probability lh,.x( F).

We note that Eq. (10) conserves the total probability, as it should:

i) • NF ,t pa(", t 0. (2
11 ~ =o

ESTIMATING THE PHASE STRUCTURE

('learly, a static solution to Eq. (10) is provided by

P,.11(Fl: 0) = 6at,,Vp( F"), (13)

for any distribution p( F). This solution corresponds to all species being at local fitness
maxima. lit the language of [1, 2, :3], borrowed from economics, the system is at a
Nash equilibrium. Whether this fixed point for the litviamics is attractive or rel)ulsive
with respect to lperturbations of put(I"), depends on the value of C. For C = 0 it is
attractive, since ii this case each species evolves iin a fixed landscape, and consequently
arrives at a local maximum. At the other extreme, C'/N >> 1.

p.aj (F; t) = Bu.N( F) (14)

is a static soltution to leading order in N/C. It corresponds to totally random fitness
F, and maximum activity A = 1/2.

At intermediate values of C, we can easily inlagiiie the existence of a static solution
with a finite activity A corresl)odling to a certain1 fraction of all species being in states
that evolve. The activity is maintai ned by a balance between the rate at which species
evolve towards fitness Inaxinlla, and the rate at which species are set back in evolution
by their del)endence on other species. We exl)ect the activity A to increase with C.

On the other hiand. we can also imagine that C( can be too small to sustain a finite
activity. Il article we show that isolated species on the average change

t, = log N + 0.0.919... + O(N-') (15)

"2 Strictly speaking, this prolbability for Al less fit iwighbors ' "tA1,,N,(F), with N' < N and At'
Al - (N - N'), becatise we already know that one or more 1-mutant neighlbor configurations are less
fit. But we can neglect this differenuce ili calculationis to leading order inl I/N for rea.sons similar to
those given in apupendix A inl article 1.
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genes in their evolution to a local maximum. So (1o species in tile NKC]-model studied
here, if they are not set back in evolution by their dependence on other species. Thus
p1 is the minimal number of genetic changes per species by which the NKC-model can
evolve to the fixed point Eq. (13). If, in doing so, each species on the average sets back
less (or more) than one other species in evolution, the fixed point Eq. (13) will (or will
not) be attractive.

We can make the argument more precise by making it perturbative: suppose for
a given value of C the system has been arranged to be at the fixed point solution
Eq. (13), and we change the fitness of one species to a random value. Since the other
species do not evolve, the one singled out evolves as an isolated species, and arrives at
a fitness maximum after having changed typically yi of its genes. But the fitness of
other species depend on the state of genes in the species that evolved; typically C other
species will each depend on one gene. If any of these C genes were among the pj genes
that changed, the species depending on them were set back in evolution, and are now
evolving, possibly setting back yet other species in their evolution. The question then
is, if the chain reaction set off this way is sub- or super-critical. Will it die out or run
away? The value for C which separates these two situations we call critical, and write
it Ccrit. It is the value for which, on the average, one out of C randomly chosen genes
is among the fl changed genes. TIms I Cc='itl 1/N , or

C = N/ril (16)

We conclude that tile species collectively evolve each to their own local fitness maxi-
mum and remain there with vanishing activity A for C < Ccrit, while they evolve to a
state with finite activity A < 1/2 for C > Ccrit. The asymptotic value of the activity
A for t --+ oo can consequently be used as an order parameter distinguishing the two
phases.

The arguments used in this section were based on average values. While we would
not expect fluctuations to change the qualitative picture, they might change the coef-
ficient in a scaling law like Eq. (16). Actually they (1o not. The perturbative result is
exact, as shown in article II, where we also find the activity as a function of c = C/N.
This function is shown in figure 3 for N = 10, N = 100, and N infinite. Also in article
II, the systems relaxation time to the steady state is calculated for both phases, and
found to diverge with mean field exponent -1 at Ccrit.

CONCLUSIONS

For species evolving in isolation, we have obtain(d rigorous results to leading order
in I/N for the length and duration of adaptive walks in a special case of Kauffman's
NK-model. We found that the average length scales as log N, and so does the variance
of the distribution of lengths. We have also obtained analytical expressions for the
prefactors in these scaling laws, and found that to leading order in 1/ logN, lengths are
Poisson distributed.

For the duration of adaptive walk, we found qualitatively different results. While the
average duration is l)roportional to N with a constant of proportionality we have found
analytically, the variance of the duration is proportional to N 2 , again with analytically
known coefficient. So while typical lengths of adaptive walks are relatively close to their
average, typical duioations vary over a range with magnitude equal to their average. We
extended this result by showing analytically that i:i the limit N --+ oo, t/N has a finite
distribution. Numerically, we found this distribution falls off exponentially for tIN > 1.
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Figure 3: The asymptotic activity A* versus the connectivity c for N = 10 and N = 100
(full curves) and for N infinite (dotted curve).

For co-evolving species, we have shown analytically that a variant of Kauffman's
NKC-model has two phases; a frozen phase in which all species eventually stop evolving,
because they all reach local fitness maxima, and a chaotic l)hase characterized by a
balance between the number of species at local fitness maxima, and the number evolving
towards such maxima, and changing the fitness landscape of other species in the process.
As order parameter we used the asymptotic activity, the fraction of species changing
genetically per unit of time. We gave a closed expression determining the asymptotic
activity as an implicit function of the connectivity between species. We also gave
expressions for the system's relaxation time to the asymptotic activity. On the line
separating the two phases in the system's parameter space, the relaxation time diverges
with mean field exponent -1.

We obtained these results in a mean field description of the model, keeping only
leading terms in an expansion in I/N, N being the number of genes per species. Since
N typically is very large, however, our leading-order apl)roximation in N is very good.
We do not expect any qualitative differences between our leading order 1/N-expansion
results and exact results as concerns the existence of the two phases, the location of the
phase boundary, and the relaxation time. As for the exponent -1 for the divergence of
the relaxation time, we have argued that it is an exact result. These results all depend
on the number of species S being effectively infinite, and certainly much larger than
both the number of genes N and the connectivity C.

It may well be possible to obtain other analytical results for the NK'C-model, using
the methods of the present paper. For 1'xample one may try to find the Lyapunov
exponents of the chaotic phase.

As for the purpose of our investigation -- the demonstration of self-organized
criticality in the Nh'C-niodel -- we see nio way that the maximally rugged variant
studied here can be driven with perturbations from its frozen phase into a "poised",
critical state, as was done in [18] with Conway's Game of Life. The maximally rugged
variant cannot be "l)uimped up" to a "poised" state -- at least not in the mean field
description -- because after the model has responded to a perturbation it is back in
the same state as it was before the perturbation was applied. This is not necessarily a
short-coming of the mean field description. It willingly descril)es for example the build-
up of the self-organized critical state of conservative sand pile models [19]. Rather, it is
due to the maximal ruggedness of the fitness landscape. Its total absence of correlations
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makes any perturbatioln of a species wipe out all inletinry of the fitness the species had
acquired before the p~ertuirlatioin was appliedl. There is, so to speak, no such thing as

a perturbation of fitness inl the maximally rugged case. (Cenetic configurations may be
perturbed by havinxg just one or a few genes chan~gedI. But that typ)ically results in a

finite change of fitness in a maximally rugged laindscap~e.
On the other hand, maximal ruggedness of the model's fitness landscape is crucial

for our ability to derive analytical results, and these results are important in view of

the difficulty of a numerical simulation of the model. So we are reluctant to abandon
it. That leaves us with another, biologically appealing possibility: we can make the

model more realistic (and comp~utationally even more difficult) by treating N and C
as dlynanical parameters of the individual sp~ecies, add criteria for their evolutionary

change, and ask if evolution drives their averages onto the critical line found in the

p~resenlt paper. That study has yet to be done. Methods and results that appear to
make such an undertaking feasible, were p~resenltedl inl articles I and II, and discussed

above.
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ABSTRACT

The paper discusses how chaotic dynamics can develop in a recently proposed model
of the interaction between human immunodeficiency virus (HIV) and the human im-
mune system. The model describes the state and number of T4 lymphocytes as they
interact with HIV and with another infectious agent. An analysis shows that when
the probability of infection of lymphocytes through contact with HIV exceeds a certain
threshold, oscillations in the concentration of free virus can arise through a Hopf bi-
furcation. Oscillations may occur even in the absence of a secondary infectious agent.
If the infection probability is further increased, chaotic oscillations develop through
a cascade of period-doubling bifurcations. The degree of chaos is quantified in terms
of the two largest Lyapunov exponents. The spectrum of singularities f(a) and the
generalized dimensions Dq are both obtained for a typical chaotic solution.

INTRODUCTION

During recent years, our knowledge of the human immune system has grown as a
result of the intensive AIDS research. This has caused the models used to describe
the immune system to become increasingly complicated, and attention may have been
drawn away from the possibility that a few simple processes could be responsible for
the observed complex behavior. Anderson and May (1989) proposed a simple model
consisting of five differential equations which can, in part, explain experimental da-
ta. With their model they observed oscillations which were "often of an erratic and
apparently unpredictable nature".

The analysis reported in this paper was performed to ascertain that this behavior
is chaotic, to determine the route to chaos, and to quantify the chaotic behavior. A
preliminary account of our results was published by Mosekilde et al. (1991).
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In vitro experiments have shown that damped oscillations can occur in the num-
ber of activated T cells after stimulation of the T cells with antigens (ZIl1er et al.
(1985)). It is therefore plausible that in vivo, too, the immune system can respond
in an oscillatory fashion to an antigen. Epidemiological models normally assume that
the infectiousness in an individual remains constant from the time he has acquired an
infection until he is removed from the pool of infected persons, either by recovery or
by death (Stanley (1989)). HIV infected individuals go through a long latent-carrier
state before AIDS develops. During this latent state, research indicates that the con-
centration of HIV in the blood varies with time (Hansen (1991), Anderson and May
(1988)). Such fluctuations can give rise to difficulties in predicting the spread of the dis-
ease (Stanley (1989)). The oscillations might also explain why the T4 cell count (which
is the best available single indicator of the prognosis (Hofmann (1990))), correlates so
poorly with the development of the disease in individuals. The transmission probability
also depends on the presence of genital ulcers (Stanley (1989)).

In the Anderson and May model, the population of T4 lymphocytes is divided into
three subpopulations: Non-activated and non-infected cells; activated but non-infected
cells; and infected cells. Non-infected cells can be activated via contact with HIV. The
activated cells can subsequently be infected with HIV. In the present paper a more
detailed analysis of the dynamics of the model is performed.

A bifurcation analysis is presented in which the behavior of the model is investi-
gated as a function of a parameter which describes the probability of the activated
lymphocytes being infected via contact with HIV. It is shown how deterministic chaos
develops through a cascade of period-doubling bifurcations, and the spectrum of sin-
gularities f(a) and the generalized dimensions Dq are calculated for a typical chaotic
solution.

Recent research indicates that mutations in the virus population may play a role
in the bursts of HIV which are seen during the symptomfree period. This offers an
alternative explanation to the chaotic bursts described in our model. A more realistic
description of the interaction between HIV and the immune system must, therefore,
include the effects of such mutations. In its present stage the model represents a first,
tentative step towards modeling the interaction between HIV and the immune system.
It shows how complicated dynamics can arise in a simple model of a biological system.

GENERAL BACKGROUND

The purpose of the immune system is to eliminate foreign invaders. The word im-
munology originates from the Latin word immunis which means free of burden. Persons
who do not succumb to a disease when infected are therefore said to be immune. Immu-
nity is due to a memory mechanism which ensures that when the immune system has
encountered an infection it will, if it later encounters the same infection, react faster
and more strongly.

The white blood cells, which are responsible for the immune response, are produceu
in the bone marrow, and some are thereafter matured in the thymus. These cells are
called T lymphocytes. A subpopulation is called T4 cells. The subscript 4 delineates
that these T cells have a protein called CD4 inserted into the cell membrane. They are
therefore also referred to as CD4+ T cells. These cells play a central role in a normal im-
mune response since they send out chemical signals (called interleukins and interferons)
which are essential to the functioning of other cells in the immune system. Lympho-
cytes are divided into a large number (appr. 109) of clones, each of which responds to

500



only one or a few antigens. The response mediated by lymphocytes is therefore referred
to as the specific response. A normal immune response is initiated when an antigen
presenting cell phagocytoses (engulfs) and digests a microbial pathogen. These cells
are called antigen presenting cells since they have the ability to break down the invader
into short amino chains and display the antigens on the cell surface. When a T cell,
specific for one of these antigens, encounters such a cell it will become activated, i.e.,
it will start to proliferate (to divide), and send out chemical signals that activate other
cells. Among these cells are the so-called B cells which will start to produce specialized
proteins, called antibodies, that neutralize the antigen.

AIDS (Acquired Immuno-Deficiency Syndrome) was defined as a new disease in USA
in 1981 after a number of unexpected deaths among young homosexual men caused by
Kaposis Sarcoma, opportunistic infections, or both. In 1983, the virus HIV (Human
Immuno-Deficiency Virus), which causes the disease, was identified. HIV is capable of
infecting the immune system, leading to a gradual break down of the immune defense.
The average survival time for people infected with AIDS is 7-11 years.

One of the most striking characteristics of the course of the disease is the selective
depletion of the CD4+ subset of the helper/inducer T cells (Rosenberg and Fauci
(1990)). In vitro HIV can directly infect and kill CD4+ T cells, and it is therefore
likely that in vivo, too, the CD4+ cells can be killed by the direct cytopathic effect of
HIV.

DESCRIPTION OF THE MODEL

The Anderson and May model considers five populations:

e Non-infected and non-activated T4 lymphocytes P.

* Non-infected but activated T4 lymphocytes X.

9 Infected T4 lymphocytes Y.

* Free HIV V.

@ An opportunistic infection I.

The model assumes that the number of non-infected and non-activated T4 cells is
increased through a constant production A of these cells in the thymus and decreased
through normal deaths at a constant per capita death rate p. In addition, the number
of immature cells may be reduced by removal from the pool through activation. The
lymphocytes are activated by contact with a cell that presents HIV antigens. The action
of the antigen presenting cells is not explicitly included in the model, so implicitly it
is assumed that the number of cells presenting HIV antigens is proportional to the
population of free HIV.

The population of activated but non-infected T cells grows through cell division.
The rate of cell division is increased via the presence of the opportunistic infection.
The population of activated lymphocytes is decreased when the activated cells become
infected. The model crudely assumes that only activated cells can be infected. Recent
research has shown that non-activated cells can also become infected, but in this case
the infection remains latent until the cells are stimulated (Rosenberg and Fauci (1990)).
The population of activated cells may also be reduced through the action of so-called
suppressor cells which ensure that the number of activated cells does not continue to
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grow after an infection has been eliminated. This contributes a term proportional to
X2 .

The population of infected cells decreases at a constant (high) per capita death rate
a. According to the model, proliferation of infected cells is negligible.

The population of free HIV, i.e., HIV outside cells, increases as the infected cells
die. New HIV viruses bud from the surface of infected T4 cells. The HIV population
decreases at a constant per capita death rate b. This population is also reduced through
absorption by infected cells and by elimination through the immune response. The
elimination is assumed to be proportional to the number of T4 cells.

The population of the opportunistic infection (which can be viral, bacterial or pro-
tozoan) is increased by proliferation with a rate constant c. It is decreased due to the
effect of the immune response.

The above assumptions lead to the following five nonlinear, coupled differential
equations (Anderson and May (1989)).

dP = A-pP-j7PV 
(Ia)dt

dX -= PV + rX + kX-/3XV- dX 2  
(lb)dt

dYd- = OXV - aY (Ic)
dV

= AaY- bV- 6(X + Y)V-- cXV (1d)dt
dl

= cI-hlX (le)dt

In these equations 8XV is the rate of infection of activated cells, where '3 is the
probability of infection through contact.

DISCUSSION OF THE MODEL

Some of the assumptions on which the model is based are questionable. For example,
the model includes only one population of T 4 lymphocytes, and the same lymphocytes
which are activated by HIV are assumed to be stimulated by the opportunistic infection.
It is not likely that the same clone of T4 lymphocytes can be activated both by HIV
and by the opportunistic infection via antigen presenting cells.

In reality, not only activated T4 lymphocytes can be infected by HIV. Non-activated
lymphocytes can also be infected, but in that case the infection will stay latent until the
cells reach some level of activation. Moreover, IIIV does not infect only T4 lymphocytes:
it can infect other cells as well. Among these are the bone marrow stem cells, and
infection of these cells can lead to a lower production of lymphocytes. HIV can also
infect macrophages. These can serve as a hiding place for HIV and secure their survival.

Finally, the model fails to recognize that the secondary infectious agent may actually
be present all the time and that the outburst of this infection could be caused by the
gradual weakening of the immune response as the HIV infection proceeds.

In spite of these shortcomings, the Anderson and May model represents a interesting
attempt seriously to model the progress of an HIV infection. Other simple models have
been proposed to explain the interaction between HIV and the immune system. Thus,
McLean and Kirkwood (1990) proposed a model very similar to the one above but with a
more detailed description of the activation and proliferation of the T4 cells. Reibnegger
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Figure 1: a) Bifurcation diagram showing the variation in the steady state HIV population as a
function of the infection probability /6. The steady state solution corresponding to V = 0 is stable
until 6 = 0.0222 where it exchanges stability with another steady state solution. This is stable until
/ = 0.0229 where a Hopf bifurcation occurs, and the steady state is replaced by a stable limit cycle.
The two branches are drawn through the maximum and minimum values of V in this cycle. Note that
although small V is not identical zero. b) Temporal variation of the main state variables. Standard
parameter values were used. In the series of peaks, the opportunistic infection I leads, followed by the
activated lymphocytes X, the infected lymphocytes Y and the free HIV V.

et al. (1987) showed how the action of the immune system might exacerbate the disease.
Nowak et a]. (1991) proposed a model where the effects of new HIV strains, as a result
of mutations in the HIV population, are taken into account.

STEADY STATE

Using the program PATH (Kaas-Petersen (1987)), the steady state solutions have
been followed under variation of the probability of infection of T4 cells through contact
with HIV. Other parameter values correspond to 'standard parameters' (see below).
The results are illustrated in figure la.

When #3 is smaller than 0.0222 week- 1 , the solution with P = A/p, X = rid and
Y = V = I = 0 is stable. This corresponds to a situation where both infections are
eliminated.

When #3 becomes greater than 0.0222 week-', this solution becomes unstable and

is replaced by an steady state solution with a non-vanishing population of HIV i.e.
V 3 0. When / becomes greater than 0.0229 week-', a Hopf bifurcation occurs, and
the stable equilibrium point is replaced by a limit cycle. This Hopf bifurcation is of the
supercritical type, which implies that in addition to the stable limit cycle an unstable
equilibrium point is born out of the stable equilibrium point (see e.g. Guckenheimer
and Holmes (1983)).

SIMULATION RESULTS

In the numerical experiments we have used the parameter values used by Anderson
and May (1989) as standard values, i.e.
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A = 1.0, u = 0.1, -y = 0.01, r = 1.0, d = 0.001, k = 0.01, Aa = 10.0, b = 1.0, b = 0.01,
o, = 0.1, c = 1.0, h = 0.01, a = 2.0 and # = 0.1.

All rate constants are in units of week- 1 . The integration is performed with a 3./4.
order Runga-Kutta pair routine with variable time step and error control (Enright et
al. (1986)).

With the above parameter values, the model exhibits self-sustained oscillations in
the absence of an opportunistic infection, i.e., when equation le is not included. Large
amplitude oscillation is triggered by the (random) arrival of an opportunistic infection.
As previously noted, a more realistic assumption would be that this infection is present
from the very beginning but that it is not until the functioning of the immune system
is strongly impaired that it can blow up within the host. It is actually difficult to find
biological processes operating on long enough time scales (years) to explain the gradual
breakdown of the immune system. Nowak et al. (1991) suggested the existence of an
antigenic diversity threshold, i.e., a maximum number of different strains of HIV that
the immune system can handle at a time. When this threshold is exceeded, the immune
system can no longer suppress the HIV strains, and a stage of fast T cell depletion is
reached.

The model is characterized by the occurrence of time constants of very different size.
Most of the time, the state variables change very slowly. In these periods the changes
are primarily due to the death-/birth rates of the various populations. However, such
periods are interrupted by short periods characterized by fast changes of the variables.
Figure lb shows the temporal variation of the various populations in more detail. In
the beginning the opportunistic infection I grows. This causes growth of the population
of activated lymphocytes. When the population of activated lymphocytes grows, the
population of the opportunistic infection decreases due to the action of the lymphocytes.
When the opportunistic infection has been defeated, the rapid growth of activated
lymphocytes stops, and soon the population of activated lymphocytes decreases as
the cells are infected by HIV. This in turn leads to an increase in the population of
infected lymphocytes. Finally, the population of free HIV V starts to grow as infected
lymphocytes lyse. Thereafter a new period of slower change starts.

PERIOD-DOUBLING ROUTE TO CHAOS IN THE ANDERSON AND
MAY MODEL

When people are infected with HIV, outbreaks of HIV antigenermia are often ob-
served throughout the long and variable incubation period. To investigate which oscil-
latory patterns the model can exhibit we have performed a bifurcation analysis where
the mode of behavior has been determined for different values of 3 (hereafter referred
to as the bifurcation parameter). Other parameters remain equal to the 'standard
parameters' described above.

The bifurcation diagram figure 2a shows the value of V at the intersection points
between the trajectory and the Poincar6 surface I = 40V for # varying between 0.1
and 1.0.

The system follows a period-doubling route to chaos. When P is between 0.1 and
appr. 0.16 a period-I attractor exists. When # becomes greater than 0.16, this attractor
becomes unstable and is replaced by a period-2 attractor. This attractor is stable until
# is increased to appr. 0.47, at which point another bifurcation occurs and the period-2
attractor is replaced by a period-4 attractor. With further increase of P, a cascade of
period-doubling bifurcations occurs, and, finally, when # becomes greater than appr.
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Figure 2: Bifurcation diagram and Lyapunov exponents. a) Bifurcation diagram showing the inter-
sections of the post-transient solutions with the Poincar6 plane V = 401 for different values of 0. b)
The two largest Lyapunov exponents as functions of j3. Standard parameters have been used, except
that the bifurcation parameter # is varied between 0.1 and 1.0.

0.77, the attractor becomes chaotic. The bifurcation diagram figure 2a also indicates
that there are windows in the chaotic range in which the dynamics is periodic. For /
near 0.83, for instance, a period 12-attractor seems to exist. When /3 is decreased, this
periodic attractor disappears via an intermittency route to chaos.

Another way to characterize the dynamics of a system is by means of its Lyapunov
exponents. In practice, the Lyapunov exponents can most easily be calculated by the
method described by Wolf et a]. (1985). In the periodic realm, the largest Lyapunov
exponent is zero, and the second largest is negative. The vanishing exponent indicates
that close to the attractor points on the same trajectory will neither diverge nor con-
verge exponentially in time. The negative exponent indicates that points close to the
periodic solution will be attracted to it.

Figure 2a - 2b shows that both of the largest Lyapunov exponents become zero at
the period-doubling bifurcation points. A positive Lyapunov exponent can be taken as
definition of chaos. If the largest Lyapunov exponent is positive, adjacent trajectories
will separate exponentially in time. The largest exponent thus determines for how
long time predictions can be made for the system (Wolf et al. (1985)). The unit for
the Lyapunov exponents is bits per week. If the initial conditions are specified with a
precision of N bits, i.e., as one out of 2 N equally possible states, then the maximal time
in which predictions can be made for the system is T ..a. = N/E, where E is the sum
of the positive Lyapunov exponents. The largest Lyapunov exponent of the system
is appr. 0.1 bits/week for /3 1. If the initial state of the system is known with a
precision of, say, one per thousand, which in binary representation corresponds to appr.
10 bits (21' - 1024) then the maximal theoretical time for which predictions can be
made for the system is 10 bits/(0.1 bits/week) = 100 weeks.

Figure 3a shows a set of return maps for different values of /3. All maps are charac-
terized by a steep upward slope for small values of V,,,. The curves then pass through a
maximum and bend downwards for higher values of V,,. This represents the nonlinear
folding of the system by which a high abundance of HIV in one cycle gives rise to very
low values in the next cycle. The return maps also show that there is an underlying
structure behind the chaotic behavior since each intersection point of the trajectories
with the Poincar6 surface is a relatively smooth function of the last intersection point.
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Figure 3: a) Sequence of return maps for different values of /: / = 0.1 (closed circles), 6 = 0.15
(open circles), 6 = 0.25 (closed triangles), / = 0.3 (open triangles), / = 0.45 (closed squares), /= 78
(open squares), and / = 1.0 (stars). The return maps move upwards with increasing # while at the
same time the slope at the point where a map crosses the diagonal increases. Other parameters are
as standard parameters. b) Phase plot in three-dimensions showing the opportunistic infection 1, tl,
population of free HIV V and the infected lymphocytes Y. /3 = 1.0. Other parameters are as standard
parameters.

For #• = 1.0 the oscillations shift between high and low peaks in an apparently
random way. Figure 3b shows a phase plot of the attractor for 13 = 1.0. For this
attractor the generalized dimensions Dq and the spectrum of singularities f(a) were
calculated using the method described by Jensen et al. (1985). In short, Dq, a and
f(a) can be obtained from the distribution of points in a Poincar6 section of the chaotic
attractor using

Dq = (q- 1)-7r(q), (2a)

a(q)- dr= , and (2b)
dq

f(a) = qdr'(q)" _ r(q) (2c)
dq

r(q) is determined as the best linear fit in a plot of log < pi(l)9-l > vs. log1. Here,
pi(l) is the probability that other points in the Poincar6 section fall within the distance
I of the i'th point in the set and <> denotes the average for all points. The Y and I
coordinates of 50,000 intersections between a trajectory and the above defined Poincar6
plane were used. Figure 4a shows that the calculated Dq curve depends on the range of
I values used for the fit. In all cases, 20 different values of I have been used, but for the
solid curve -3 < log10 1 < -1, for the dashed curve -2.5 < log10 1 < -0.5, and for the
dotted curve -3.5 < log 0 I < -1.5. The f (a) curve corresponding to the solid curve
in figure 4a is shown in figure 4b. The algorithm produced negative values of f(a) for
large values of Iql (not shown in the plot), indicating that 50,000 points are insufficient
to establish appropriate dimension measures, especially for the sparsely visited regions
of this attractor.
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figure 4a. 0 = 1.0. Other parameters attain standard values.

CONCLUSION

We have shown that oscillations can occur in the model both in the number of T4
lymphocytes and in the number of free HIV. Such oscillations can severely complicate
attempts to predict the spread of the disease because models of this spread normally
assume a constant level of infectiousness from a time after the infection to the time
where the person is removed from the infected population. Such oscillations might also
explain why the number of T4 cells correlates so poorly with the clinical prognosis.

From our investigations, we can conclude that the model exhibits chaotic behavior
for some parameter values. This may be a part of the explanation why the disease
develops so differently in individuals.

It must be stressed, however, that the very complicated processes involved in the
regulation of the immune system and in the replication of the HIV virus are represented
in a very simplified manner and that some of the assumptions on which the model is
based are doubtful. There are indications that the clinically observed oscillations are
due to mutations of the HIV such that each new HIV strain initiates a new immune re-
sponse. Nevertheless, the model illustrates how very complicated dynamics can arise in
a relatively simple nonlinear system. In other words: when a biological system exhibits
'fuzzy' dynamics it does not necessarily imply that the system is very complicated or
that it is influenced by random noise. Even very simple nonlinear dynamical systems
can exhibit a wide variety of behavior, and we believe that many multi-species systems
are likely to exhibit chaotic dynamics for realistic parameter ranges.

ACKNOWLEDGMENTS

We are grateful to Jesper Skovhus Thomsen for his assistance in calculating the Dq
and f(a) curves. M. Hewitt is acknowledged for his comments on the manuscript.

507



REFERENCES

Anderson, R.M., and R.M. May, 1988, Epidemiological Parameters of IIIV Transmis-
sion, Nature 333: 514 - 519.

Anderson, R.M., and May R.M., 1989, Complex dynamical behavior in the interaction
between HIV and the immune system, in Cell to Cell Signalling, From Ex-
periments to Theoretical Models, ed. A. Goldbeter, 335 - 349, New York:
Academic Press.

Enright, H. W., Jackson, K. R., Norsett, S. P., and Thomsen, P. G., 1986, Interpolants
for Runge-Kutta formulas, ACM Trans. Math. Soft. 12: 193 - 218.

Guckenheimer J., and Holmes, P., 1983, Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields, New York: Springer-Verlag.

Hansen, J. E. S., Department of Infectious Diseases, Hvidovre Municipal Hospital,

1991, Pers. comm.
Hofmann, B, 1990, AIDS Immunology, HIV Induced Cellular Immune Deficiency, Copen-

hagen: Laegeforeningens Forlag.
Jensen, M. H., Kadanoff, L. P., Libchaber, A., Procaccia, I., and Stavans, J., 1985,

Global universality at the onset of chaos: Results of a forced Rayleigh-Benard
experiment, Phys. Rev. Lett. 55 (25): 2798 - 2801.

Kaas-Petersen, C, 1987, PATH User's Guide, Leeds, U.K.: Center for Non-Linear
Studies, University of Leeds.

McLean, A. R., and Kirkwood, T. B. L., 1990, A model of human immunodeficiency
virus infection in T helper cell clones, J. The-r. Bio. 147: 177 - 203.

Mosekilde, E., Lund, 0., and Mosekilde, Li., 1991, Structure, complexity and chaos
in living systems, in Complexity, Chaos and Biological Evolution, ed. E.
Mosekilde and Li. Mosekilde, 2 - 30, New York :Plenum Press.

Nowak, M. A., Anderson. R. M., McLean, A. R., Wolfs, T. F. W., Goudsmit, J., and

May, R. M., 1991, Antigenic diversity threshold and the development of AIDS,
Science: 963 - 969.

Reibnegger, G., Fuchs, D., Hausen, A., Werner, E. R., Dierich, M. P., and Wachter,
H., 1987, Theoretical implications of cellular immune reactions against helper
lymphocytes infected by an immune system retrovirus, Proc. Natil. Acad.
Sci. 84: 7270 - 7274.

Rosenberg, Z. F., and Fauci, A. S., 1990, Immunopathogenic mechanisms of HIV in-
fection: cytokine induction of HIV expression, Immunol. Today 11: 176 -

181.
Stanley, E. A, 1989, Mathematical models of the AIDS epidemic: A historical perspec-

tive, in Lectures in The Sciences of Complexity, ed. D. Stein, 827 - 840:
Addison-Wesley Longman.

Wolf, A., Swift, J.B., Swinney, H. L., and Vastano, J.A., 1985, Determining Lyapunov
exponents from a time series, Physica 16D: 285 - 317.

Z61ler, M., Lopatta, D., Benato, B., and Andrighetto, G., 1985, Oscillation of antibody
production and regulatory T cells in response to antigenic stimulation, Eur.
J. Jmmunol. 15: 1198 - 1203.

508



PHASE LOCKING OF THE BONHOEFFER -
VAN DER POL MODEL

M. Friedman2, S. Goshen 2, A. RabinovitchI and R. Thieberger1 ,2

1. Physics Dept., Ben-Gurion University, Beer Sheva, Israel
2. Physics Dept., NRCN, P.O.Box 9001, Beer Sheva, Israel

In the last decade there has been a great deal of interest in theoretical and experimental

studies of periodically forced non linear systems. The neural information propagated along
an axon belongs to this category (see e.g. papers in Degn et al.,1987). Stimulated responses
of action potentials in squid giant axons can be understood in terms of a dissipative structure
that behaves as a nonlinear neural oscillator. In this work we will consider the Bonhoeffer

van der Pol (BVP) model (FitzHugh,1969)

x = x - x3/3 - y + I(t)
(1)

y = c (x+a-by)

for this problem; here x is the membrane potential, y is a variable representing the time

constant of recovery of the membrane from stimulation (called the refractivity), I(t) is the
membrane current ( an input function), and a,b,c are positive constants representing the
membrane radius, the specific resistivity of the fluid inside the membrane and the

temperature factor, respectively. These constants satisfy the inequalities b < I and 3a+2b

> 3.
Recently, two studies of these equations, have been conducted. (Rajasekar and

Lakshmanan,1988a,1988b; War:-,1989) and in accord with them we adopt the values :

a = 0.7 , b = 0.8 , c = 0.1 , I(t) = A0 + Al cos("t) (2)

where A0 , Al and co, are parameters of the input function. An experimental paper by
K.Aihara and G.Matsumoto in Degn et al.(1987) p.121,considers such an I(t) and shows

the existence of mode locking and of intermittency.
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The r-ain emphasis in the above mentioned theoretical papers was on the bifurcation

scheme for A 0 = 0. In one of the papers (Rajasekar and Lakshmanan,1988b) a brief

discussion concerning the devil's staircase (requiring A0 * 0) only for the case IoI = 1 and

for arbitrarily chosen values of A,, was presented. The ensuing winding number was
plotted as function of A 0 ,and was thus restricted to only a part of the range of possible
values. A careful discussion of some problems concerning this issue is given elsewhere

(Yasin et al.,1992).

In two recent experimental papers on normal squid axons (Matsumoto et al.,1987;
Takahashi et al.,1990) forced by a train of pulses (contrary to the cosine force discussed
here) a global bifurcation diagram was obtained. One of the interesting features was that the
values of locked modes were restricted to specific winding numbers ,wr,and did not extend

over the complete Farey tree.We wanted to check if we could get a qualitatively similar

behaviour in our periodically forced BVP equations, for cases closer to the experimental

case,which could indicate a similar underlying pattern.
In contrast to the previous study (Rajasekar and Lakshmanan,1988b) where

A0 >0.3 was used in order to have an autonomous limit cycle, we use A0 = 0.15 .This
value is within a range of a stable focal point attractor, in agreement with the

experimentaly studied squid axon case where only nonoscillatory neurons were treated.
The above mentioned experiments ( Takahashi et al.,1990)used trains of pulses of

constant height and of varying time intervals,as the forcing term. Therefore we chose our

cosine term , J(t) ,as the first two terms in a Fourier approximation to a pulse train.If we

denote by S the area below a single pulse , by d half the pulse's width and by T the time
interval between consecutive pulses we obtain:

J(t)-fo+f1 cos (2n/T) , fo=Ao+S/T, fl=2S sin (2it d/T)/( 2it d) (3)

As a demonstration we calculated one specific case : A0 = 0.15 ,S=3.7,d=O.15 the
results are shown in fig. 1.Except for very few irregular regions between wr=-1/2 and 2/3

and between wr=-2/5 and 3/7 we obtained only locked modes behaving as n/(n+l) above

wr=1/2 and as n/(2n+l) below wr=1/2. This is qualitatively in agreement with the
experimental result ( Takahashi et al.,1990).For the pulse train case the values n/(n+l)
correspond to an output train 'no' while n/(2n+l) corresponds to an output train
'(10)n(100)'.

We did not attempt to push this agreement farther or to check the respective widths

of the locked regions,since we do not expect those to agree with our crude picture.We
would like to mention that while studying this equation we noticed that the above
mentioned modes prevail for a wide range of values of S and A0 .The main difference

being in the width of the different locked mode regions.
We see that although our J(t) is a cosine and only a first approximation to a pulse

and our equations (BVP) are only an approximation to the axon behaviour, a part of the
mathematical structure of the equations seems to be already fairly similar in the two cases.
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Fig. I Mode locking for BVP oscillator under cosine type forcing. A0 =0.15 , S=3.7, d--O.15

A0 is the basic time independent forcing term,S is the area below the pulse ,d half the pulse width, wr is

the winding number ,T the time interval between consecutive pulses.
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CONTINUOUS OR DISCRETE STATE DYNAMICAL SYSTEMS AS

MODELS FOR COMPUTATION IN NEURAL SYSTEMS
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INTRODUCTION

Two major advances in the mathematics of nonlinear systems have been
the description of chaos in nonlinear ordinary differential systems and of
solitons in nonlinear partial differential equations. The importance of
these phenomena in laboratory and even planetary physics has reinforced the
belief that nature is best described by smooth functions defined in
continuous time on continuous space. However, all computational studies on
nonlinear systems are in fact realised in discrete time on a discrete space
grid. Biological systems are inherently discrete - populations are composed
of individuals, tissues are composed of cells, and cells composed of
molecules: a discrete description may be more appropriate than a continuous
description. Further, discrete systems can exhibit richer behaviours than
continuous systems they are related to (e.g chaos in the quadratic interval
map); a discrete system is not simply an approximation to a continuous
system. Improvements in the availability of computer power, and advances in
VLSI technology, have led to a resurgence in interest in simple discrete
systems - cellular automata and coupled map lattices - as a class of models
that offers new insights into spatially extensive nonlinear systems.

My particular interest is in pattein generation by nervous systems and
models of nervous systems. Sherrington described the pattern of activity in
the waking brain as "the head-mass becomes an enchanted loom where millions
of flashing shuttles weave a dissolving pattern, always a meaningful pattern
though never an abiding one; a shifting harmony of subpatterns". This idea
underlies most of current neurophysiological thinking, but mathematical
modelling based on nonlinear interacting systems of neurone like elements
has added little to this description as a crucial feature of the patterned
activity in neural systems is its meaning.

Here I review some recent work that approaches models of the behaviour
of neural systems (an example of the behaviours of nonlinear complex
systems) within the framework of the theory of synchronous concurrent
algorithms - this approach allows us to consider the models as computing
systems, rather than as dynamical systems whose behaviour can be explored
using computing systems. This approach is obviously relevant in studying
information handling systems such as neural networks, but it also provides
an approach to complexity in general e.g. the models of computation for
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algebras that forpn rings and fields developed for dynamical systems in Blum,
Shub "and Smale are special cases of the models of computation that we use
below°'.

EXCITATION EQUATIONS AND MAPS

One of the major successes of modern biology is the description of an
action potential (in the giant axon of the squid) by four coupled nonlinear
ordinary differential equations (ODEs) - the Hodgkin Huxley membrane
equationss' . When these are combined with Kelvin's 1855 cable equation
the resultant parabolic nonlinear partial differential system provides a
quantitatively accurate and mechanistically precise description of

" grsating nerve impulses, which forms a necessary but not sufficient basisfor Perception ".
For networks of interconnected neurones, where the neurones themselves

can have complicated oscillatory and even chaotic behaviours, we need simple
models that retain the rich behaviour, and methods of further simplifying
these models. Our approach is to start with a simple model 3 variable ODE
that was derived from experimentally obtained current-voltage relations, and
that describes the, pwriodic patterned and bursting activity of neurones,
reduce it to a map" . The return map obtained via Poincare section provides
a set of different one-dimensional maps for different sets of parameter
values. The bifurcation diagrams for such maps adequately reproduces the
qualitative features of the bifurcation diagram obtained from numerical
integratiol of the ODE. These maps are then incorporated in small
networks' of coupled maps, and in large, locally or globally coupled map
lattices; and to develop general approaches to the behaviour of networks of
coupled maps.

COUPLED MAP LATTICES

A coupled map lattice is characterised by its lattice architecture,
states at each lattice state, its local dynamics at each site and its
behaviour; and its global dynamics.

Lattice architecture Let X be a set of lattice points. For each x E X, let

Nhd(x) = { x, yl, ... , Yk(x)-I}

be a given set of neighbourhood points.

Lattice state Let A be a set of data used to describe the state of the
lattice at a point x E X. The global state of the lattice is represented by
a map

a:X-4A

where a(x) is the local state at x E X. Let [X4A] be the set of all possible
states at the lattice.

Local dynamics The local dynamics at lattice point x E X is constructed from
the following:

i) An isolated local process at x governed by a law. This can be
represented by the local map

fx: A -+ M

where M is a set of all possible auxiliary or derived values for the states
of points, and fx(a) is the value generated at x when in state a.

ii) A process of interaction that combines the isolated processes
located in a neighbourhood of x. This can be represented by the map

gx: Mk(x) -* A
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which couples the values generated by the states of the points in the
neighbourhood

Nhd(x) - x, Yl ..... Yk(x)-I"

Global dynmics The global dynamics of the CML is given by the family < V
x e X> of local state functions of the form

Vx, T x [X4A]-+A

defined by
Vx(O, a) = '(0)

Vx(t+ 1, a) = gx(fx(Vx(t, a)), fyl(Vyl(t, a)), . yk(x)-l (V yk(x)-l (t, a)))

This family is naturally combined into the global state function
V: T× [X4A] 4 [X-*A]defined by
V(t, a) (x) = Vx(t, a).

SYNCHRONOUS CONCURRENT ALGORITHMS

A synchronous concurrent algorithm (SCA) is an algorithm based on a
network of processing elements called modules, connected together by
channels, that compute and communicate data in parallel and are synchronised
by a global clock T = {0,1,2,....). The SCA processes a clocked sequence
a(O), a(l), a(2), ... of data taken from a set A : this sequence is a
function a: T -* A. Each module m is a computational device with di input
channels and one output channel that implements function fm-- A 4 A.

Communication between modules occurs along channels that can transmit only a
single datum a E A in any time cycle; channels can branch but not merge. A
source is a module that reads data into the network: it has no input
channels, and a single output. A network with n sources will process n
streams a1, a2 , ... , an that form the vector-valued stream a : T 4 A . A
sink is a module from which data is read out of the network; it has a single
input channel and no output channel. Two modules are neighbours if the
output channel of one is an input channel of the other. The architecture is
the structure of a finite network of modules connected by channels.

Mathematically, an SCA consists of some sets of data, time cycles and
data streams, and some basic functions on these sets, which are combined
using the network architecture to form a system of equations whose solution
is the system of functions uhat give the state and output of the SCA. In
order to understand the ir1!taiisation (e.g. to establish the existence and
uniqueness of solutions) we mLt examine these components more carefully.

The data set A, clock T and stream [T 4 A] are combined with the
component functions of the k modules

fi: An(l) , A, ... , f.: An(k) - A
and the constants and operations on time

0 and t+l
and read function

eval: T x [T 4 A] 4 A
eval(t,a) = a(t)

to form an algebra A
(A,T,[t 4 A]l f....fk' 0, t+l, eval).

The equations are derived from the topology of the network and the unit
delay hypothesis; the equations have the form of a system of primitive
recursion equations over the operations of A. Thus we have a method that
allows us to specify the state and output from a network of any architecture
if we know the architecture, functionalities of the modules and initial
inputs. The general CML model of computation is a special case of an SCA.
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COMPUTATIONAL POWER OF SCA AND CML

Most models of computation are designed to compute functions
f: h1n 1  IN

on the set ti of natural numbers.
Recently, models of computation have been developed to compute

functions f: An -4 A
on any data set A. They start from the set A and a family of basic functions
or, ..... k on A which taken together form an algebra

(A, a1, .... I k).

Many of these models are natural generalisations of models of computations
invented for HI. We have analysed computation by SCAs lying any model of
computation that satisfies certain axioms and shown for CMLs :

ff the local and coupling maps are computable in the classical models of
real number computation then so are the state maps. Furthermore, all the
standard examples of local and coupling maps considered are computable and
so therefore are their corresponding state maps.
The key point is that for a large class of mathematical theories about the
computation of functions, including the standard theories of describing the
computable functions on real numbers, we have shown that a CML model for
computation does not yield processes, behaviours, or input-output functions
that are new.

To approach the question: Can physical and biological systems perform
computations that cannot be performed by digital computation? We have
addressed the question : Can systems faithfully modelled by CMLs perform
computations that cannot be performed by digital computation? and given one
precise sense in which the answer is likely to be 'No'.
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INTRODUCTION

The spontaneous formation of complex patterns and form in biological systems is
largely unexplained. Turing(1952) demonstrated however that autocatalytic biochemi-
cal reactions coupled to internal diffusion, but without external control, could break up
from the original homogeneous state and form stable well defined inhomogeneous con-
centration gradients and patterns. General reaction-diffusion systems may be described
by

9c/&t = F(c) + DAc (1)

where c is the concentration vector, F is the chemical kinetics rate vector and the
last term describe Fickian diffusion. If the Jacobian J = OF/Oc, evaluated at the
homogeneous steady state, is of one of the forms (a) or (b):

J-- + -) (a) J-=(- + ) (b)(2

spontaneous pattern formation may occur if the rates and diffusion constants satisfy
certain inequalities. In the case (a) one speaks of an activation- inhibition system, as cl
activates both its own formation and that of c2 , and c2 inhibits both rates. The second
class (b) were introduced by Sel'kov (1967) and studied by the socalled brussels group,
the leader of which, I. Prigogine, got the Nobel price in 1977. Their work demonstrate
that Turing structures are fully compatible with the second law of thermodynamics as
living systems are open systems and they showed (1974) with bifurcation theory that the
patterns found in computer simulations are genuine solutions to the nonlinear partial
differential equations above. References to early work on such spontaneous symmetry
breaking in biochemical systems is found in (Nicolis and Prigogine, 1977).
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A particular Sel'kov type system may be written as

act V- 1+KicI + DjAc1  (3)at T1+1 (3)3
ac 2  _ kc 1c3

S= 1 +1( k2c2 + D2 AC2  
(4)

Here component one is fed homogeneously from a source with rate v and converted to
component two with a rate displaying product activation with Hill constant I' greater
than one. Component two is in turn consumed by first order kinetics. Thus the system
is thermodynamically open and a flow of free energy through the system keeps it far
from equilibrium. Both components satisfy a no flux condition 0c4/On = 0 where a/On
denotes the gradient along the outward normal at the surface. The emerging patterns are
to a first approximation proportional to eigenfunctions ',.1j to the Laplacian satisfying

S= (5)

For one dimensional model systems of length L, these functions are simple cosine func-
tions cos(nirz/L). The general 3 dimensional case is studied here as this makes compar-
isons to actual biological experiments feasible.

BIFURCATION THEORY

Analytical solutions to Eq(1) may be found by expanding c from the homogeneous
stationary solution co, i. e. z = c - co. Inserted in Eq(1) we get a linear and a nonlinear
part

L(z) + N(z) = 0 (6)

where

L(z) = Jz + DAz (7)

and by construction Lz = 0 for z = 0 (the homogeneous case). Nontrivial inhomogeneous
solutions to Lz = 0 may be found by substituting 6ba,1n.ml for z which yields

IJ - k,,/DVl = 0 (8)

This equation for the determinand specifies where bifurcation may occur to inhomoge-
neous solutions of geometry 4i,.. We then expand in a small parameter e and collect
terms to the same order in e. A hierarchy of linear problems then arise which may be
solved. The solution to the arising algebraic bifurcation equations shows that nonlinear
selection rules apply and transitions to patterns with certain geometries are forbidden.
The geometry of the bifurcating solutions is common to large classes of models with
different chemistry details. Similar results have recently been obtained also in the case
of Turing systems of the second kind

ac/Ot = F(k(r), c) + V . D(r)Vc (9)

in which one Turing systum forces rate constants to be position dependent in a second
system (Hunding & Brtns, 1990). It is thus meaningful to study pattern formation in a
particular model system numerically as the patterns and pattern sequences recorded are
common to a broad class of chemical networks. This makes comparisons to biological
experiments reasonable.
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NUMERICAL STUDY OF PREPATTERN FORMATION

Bifurcations to Eqs(l & 9) have been investigated by numerical solution. The method
of lines was used and thus the system of nonlinear partial differential equations was con-
verted to a large system of ordinary differential equations by discretization of the Lapla-
cian in three curvilinear coordinates. The resulting system is stiff and solved accordingly
(modified Gear code). The Jacobian used in the corrector step is a sparse banded matrix
which may be rearranged (chessboard numbering of meshpoints) to yield large blocks
within which the solution vector elements may be iterated in parallel (RBSOR method).
Implementation on vector computers results in a huge speed up: A factor of 500 speed
up is achieved with the stiff code. The parallel code runs efficiently and close to the top
speed of machines like the CRAY X-MP (160 MFLOPS) and the Fujitsu VP1100 (210
MFLOPS) rather than some 8 MFLOPS in scalar mode. A total speed up of a factor
12000 is thus achieved. This makes the numerical study of three dimensional pattern
formation possible and thus direct comparison to biological experiments feasible.

TURING STRUCTURES IN MORPHOGENESIS

Originally Turing structures were suggested as prepatterns in morphogenesis. When
two dimensional computer simulations appeared in the 1970's it became clear that pat-
terns with wavelength much shorter than the dimensions of the embryo were hard to
obtain reproducibly. This problem of stabilising certain short wave length patterns over
other coexisting patterns may be solved by using Turing systems of the second kind
Eq(9). The simplest such system is one in which rate constants (enzyme activation)
vary with position along a gradient. This was shown to stabilise stripes perpendicular
to the gradient. The problem of size regulation has been solved as well (Hunding and
Sorensen, 1988). These recent developments make Turing patterns ideal candidates for
spatial governors during early embryogenesis in the fruit fly Drosophila. Regions of ac-
tivity of specific genes and their proteins are now available. The maternal genes bicoid
and nanos provide gradients from the anterior and posterior ends of the egg respectively
which in turn are used for activation of the gap genes. In the next level of the hierar-
chy the primary pair-rule genes appear. These genes are each expressed in a series of 7
stripes. The mechanism for the formation of these 'zebra' stripes is unknown. Activation
by a combination of maternal and gap genes seems to be involved in the expression of
particular stripes. Theoreticians have pointed out that the 'zebra' stripes alternatively
may be generated by Turings mechanism, that is, by an autocatalytic reaction-diffusion
system. The particular pair-rule stripes could then be activated by a combination of ma-
ternal, gap and Turing pattern interactions. Recent reviews have appeared by Ingham
(1988), Hfilskamp & Tautz (1991) and Pankratz & Jickle (1990). References to Turing
type models may be found in Hunding, Kauffman & Goodwin (1990).

Simulation of the pair-rule level is based on the following model. The maternal and
gap genes are assumed to affect rate constants so that a Turing system of the second kind
arises. This Turing system activates the pair-rule genes. Interactions among the pair-
rule gene eve and other genes were build in mainly based on the study of eve patterns in
gap and pair-rule mutants given by Carroll & Vavra (1988). Rate laws for the pair-rule
genes following this model may be illustrated by eve:

d(eve) _ k, (A)• 1 (0
x x x f(gap) (10)

dt 1 + Ki(bcd)" 1 + K 2(A)" 1 + K3(runt)-
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Figure 1: Computer simulated patterns of zebra stripes in Drosophila. Gene eve in
wild type, hb- and gt- respectively. The deletions and enhancements of stripes as seen
experimentally are captured by the computer model.

The substance A is one of the components of the stripe defining Turing system, which
is activating eve expression. Both A, bcd and runt repression are here taken to be
cooperative with Hill constants n and m greater than two. The last term f(gap) may
be included to define activation or repression by cues defined by combinations of gap
(or maternal) genes. The stabilization of the Turing zebra stripes is mainly due to the
gradients from the bed, nos system. Slight addition of influence from the gap genes has
the role of enhancing the amplitude of the stripes in the central region. This model is
robust towards gap gene mutants as the zebra stripe pattern is basically undistorted.

What emerges is then a robust zebra stripe prepattern which is then converted to
actual activated genes quite possibly by specific combinations of gap genes acting as
crude activators in their common regions. That is the system of such cues is not the
stripe generator but essential for activating pair rule genes in specific regions over the
Turing pattern.

Thus the model proposed on the basis of the present numerical study may be said
to combine the two current rivaling models, as it indicates that cues are necessary to
explain the experimentally observed result on zebra stripes caused by gap mutants, but
Turing stripes are necessary to provide a stable underlying stripe generator.

Computed patterns for the most successful model so far is given in Figure 1. Stable
zebra stripes are obtained and the results of some mutant calculations are given as well.
Although the exact effect is not the same as what is seen experimentally in such mutants,
several of the qualitative aspects are captured by the present computer model.
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INTRODUCTION

The heart is a typical nonlinear oscillator. In mammals the heartbeat is controlled by
the heart's own pacemaker, called the sinoatrial node (SAN), which emits electrical pulses,
that trigger the contraction of the heart muscle. The isolated SAN is a periodic oscillator',
but in the intact heart the node is controlled by the autonomic nervous system. Para-
sympathetic nerves reduce the rate and sympathetic nerves increase the rate at which the
SAN 'fires' its electrical pulses. The two types of nerves are therefore in a constant 'fight'
to control the electrical activity of the SAN resulting in substantial fluctuations in the time
intervals (RR-intervals) between successive heartbeats in healthy subjects. Recent studies
of these fluctuations in RR-intervals as well as of whole electrocardiograms using nonlinear
methods have indicated that the dynamics of the heart is chaotic24. On the other hand it
has been known for more than a decade that certain heart dysfunctions and severe diabetes
can be associated with a loss in the variability of the RR-intervals5'6 , suggesting that during
these illnesses the heartbeat becomes more regular and hence 'less' chaotic. In this study
we employ nonlinear forecasting to analyze the RR-intervals of electro-cardiograms from
120 patients who have experienced their first myocardial infarction, and 35 normal
subjects. The purpose of this study was to evaluate if nonlinear forecasting could be used
to characterize the dynamics of the heart and in particular if this method would reveal any
differences between the normal subjects and the patients.

METHODS

Patient Mpulation. The patients were men of age 30 to 70 years, hospitalized at
Odense University Hospital with a first acute myocardial infarction. Patients with insulin-
dependent diabetes mellitus, permanent cardiac pacemaker and other chronic disabling

Future Directions of Nonlinear Dynamics in Physical and Biological Systems
Edited by P.L. Christiansen et al., Plenum Press, New York, 1993 523



diseases were not included in the study. Also patients with conduction and rhythm
disturbances on the 12 lead electrocardiogram at rest were excluded from analysis. At the
same time other clinical data have been collected. These include exercise-ekg, ecco-
cardiography and ST-segment analysis on Holter tapes. Consequently, the patient group is
extremely well described. The normal subjects were men of the same age group as the
patients who had volunteered for the study.

Follow uL. All patients were followed up at regular intervals in the outpatient clinic
including ambulatory monitoring. Primary endpoints were occurrence of arrhythmic or
ischemic events. For patients who died, mode of death was determined.

Long-term electrocardographic monitoring and analysis. Twenty-four hour
ambulatory monitoring was initiated at discharge (median 11 days after infarction) with a
2-channel tape recorder (Tracker Reynolds). At the time of discharge the patients were
fully mobilized with 6-8 hours of sleep and were encouraged to engage in normal daily
activities. Tapes were analyzed for the presence of arrhythmias and fluctuations in RR-
intervals on a commercially available device for tape-analysis (Pathfinder III ST,
Reynolds). The tapes were analyzed visually to ensure that normal and extrasystolic beats
were triggering the equipment correctly. The tapes were then digitized and transferred to
a Personal Computer. Each beat was tagged as normal or not-normal according to its
recognition by an algorithm used during tape analysis. Only normal-to-normal RR-intervals
were used in the study.

Nonlinear forecasting Chaotic systems possess a property called 'sensitive
dependence on initial conditions7,' and this property precludes long-term predictions.
Nevertheless, attempts to predict the future in a chaotic time series can provide useful
information about the system producing the time series, and may eventually be used as an
alternative procedure for identifying chaotic dynamics. Special routines, called nonlinear
forecasting programs, have been developed for such predictions"'. Basically these
programs find states in the neighbourhood of a point, X(t), whose future is to be predicted.
The neighbouring points are chosen from previous records of states. To make a prediction
we first fit a local chart that maps points of the neighbourhood into their future values and
then evaluate the chart to X(t). The procedure used here is similar to the zero-order local
approximation described by Farmer and Sidorowichs. The method was applied to 15-20,000
RR-intervals recorded while the person was asleep. The RR-intervals were embedded in
two dimensions as (RRI,RR+,) using the reconstruction scheme proposed by Takens'°. The
first one third of the data was used to generate a library of patterns which then was used
to make predictions of each of the remaining two thirds of data with prediction periods
ranging from one to ten RR-intervals. For each prediction interval the correlation
coefficient between predicted and observed RR-intervals was calculated.

RESULTS AND DISCUSSION

Fig. 1 shows the correlation coefficient versus the prediction period (T. measured as
number of RR-intervals) for two normal subjects and two patients of age 55-58 years. We
note that for all persons the predictability declines with increasing prediction period. This
type of predictability profile is typical of chaotic dynamics, although it cannot be taken as
unambiguous evidence for such dynamics9 . We also note that in the patients the decline in
predictability is slower compared to the normal subjects. As opposed to the pattern shown
in Fig. 1 a completely random fluctuation would always give correlation coefficients close
to z',ro independent of the length of the prediction interval, whereas dynamics correspond-
ing to a periodic cycle would yield correlation coefficients close to one, also independent
of the prediction period. It should be mentioned, however, that autocorrelated noise may
show a similar predictability profile to those of Fig. 19.
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Figure 2. Rate of loss of predictability versus age for the 35 normal subjects. The rate is obtained as the
slope calculated over the first 5 intervals of the curves corresponding to Fig. 1.
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Figure 3. Rate of loss of predictability versus the age for 13 patients who experienced a second myocardial
infarction during the follow up period (left) and 6 patients where sudden cardiac death or ventricular
fibrillation occurred (right).

Fig. 2 shows a plot of the rate of loss of predictability versus age for the normal
subjects. We note that the rate declines with increasing age, suggesting that the complexity
of heart dynamics declines with age. Interestingly, computing the correlation dimensions
of electrocardiograms, Kaplan et al" found a similar decline in complexity of the dynamics
of electrocardiograms with age.

Fig. 3 shows similar plots to that of Fig. 2 for 13 patients who experienced a second
myocardial infarction (MI) and 6 patients where sudden cardiac death (SCD) or ventricular
fibrillation (VT) occurred. We note that 9 of the MI-patients and 3 of the SCD- and VT-
patients have predictabilities which are substantially higher than the corresponding
predictabilities of normal subjects of the same age. Thus, there seems to be a tendency that
those heart patients, that experience major post infarction complications have more
predictable electrocardiograms than the normal subjects.
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INTRODUCTION

In biological systems the cell is the unit ol structure and function. Proliferation depends
on the growth of individual cells followed by their division. This process, the cell division
cycle, is rigorously controlled (Lloyd et al., 1982b), and the elucidation of the mechanisms
involved is the most central and important task in biological research. As well as providing
new insights into normal growth processes, an understanding of dynamical models will
provide a basis for the prevention of the abnormal uncontrolled proliferation characteristic of
cancer (Gilbert and MacKinnon. 1992).

A number of simple limit-cycle models have been proposed (Sel'kov. 1970, Gilbert.
1974: Klevecz, 1976; Chernavskii et al., 1977) to account for the cycle of processes whereby
cells grow and divide, and biochemically plausible paired state variables (x.y) are easily
identifiable (protein thiols / disulphides, phosphorylated proteins etc). However, individual
cells have widely differing cell cycle times; the coefficient of variation sometimes reaches
15-25% (Brooks, 1985): this variability is usually modelled by inclusion of a "noise term" to
take account of stochastic events (Gilbert, 1981; Mustafin and Volkov. 1977: Lloyd and
Volkov. 1990). A further source of variability in cell division times is observed as a
quantization, whereby incremental increases correspond to the period o1f a temperature-
compensated oscillator (the ultradian clock), Lloyd et al., 1982a: Lloyd and Kippert. 1987.
Both dispersion and quantization can be simulated by a system in which ultradian clock
pulses interact with the mitotic relaxation oscillator (Lloyd and Volkov. 1990: 1991: Lloyd.
1992). Here we show, that for certain parameter values, it is not necessary to use a "noise
term" as the interacting oscillators can show chaotic dynamics.
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THE MODEL

The following system of equations (Chernavskii et at., 1977: Lloyd and Volkov l990:
1991) was employed in which the cell cycle oscillator has a slow variable (rL of the order of
hours) and a fast variable (TL of the order of minutes):

TL dE =q-2LR - DL
dt

"TR4R9 = H+LR-R 2 -. (.
dt (R + 6)

where Land R arc concentration terms, "tL and tR are the characteristic limes, and )1, D. H. y
and 6 are velocity constants.

Modulation by an output of the ultradian clock, period TUR is simulated by the
introduction of a harmonic term as a forcing function into the slow equation. which then
hcco imes:

TL dL =i-2LR-DL+CsinQt (2)

dt

where

TUR = 2n / Q << Tcell cycle

The auto-oscillating solution considers that cells divide when L(l) reaches a threshold to
initiate a rapid phase of the cycle.

COMPUTER SIMULATIONS

Dynamic structure of the equations was studied numerically.

5.547

Lmax

1.948
2.575 TI 5.325

.'IGLtREL . Bifurcation diagram for lhý model described in cqns. (n) and (2) as
q varies between 2.5 and 5.2. For each value of q. I 00 maxima of L are plollcd
lIllo\ in a itransient of I(X time units. Other parameters were as follows:
D=0L4. H = 0.15,,: = 1.5, b = 0.15, C =0.45, = 5.0,T1 . = 1, andTR =0.1
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The bifurcation diagram (Lmax vs. il, Fig. 1) shows that a chaotic region begins at 1 =
4.65 and gives way to simple periodic oscillation at il = 5.0 . the route to chaos is via a
quasiperiodic regime. A time-one map (R vs. L at time intervals of TUR . Fig. 2) has an
intricate structure.

3.4

1.7 5.5

FIGURE 2. Time-one map o1 the simulation for l = 4.95.

i (M)corresponding values of R and L arc plotted at intervals of TtJR = 2Q

Calculation of the correlation dimension, D2 (Grassherger and Procaccia, 1983) gave a
value of 1.95, confirming the presence of a chaotic attractor. Lyapunov exponents (Wolfet
at, 1985). in bit per unit time, were X, = 0.21 , X2 = 0 , X = -6.32 and the Lyapunov
dimension DL = 2.03 . The positive value of X1 and non-integer DL confirm chaotic
dynamics. A relative frequency plot of cell cycle times for i = 4.95 shows a trimodal
distribution with negatively - skewed dispersions (Fig. 3c) : for comparison we also present
(Fig. 3a,b) experimental data obtained by precise measurement of individual cell division
times for the protozoan Paramecium tetraurelia (Lloyd and Kippert, 1987), and computer
simulated results for a noisy relaxation oscillator (Lloyd and Volkov, 1990).

CONCLUSIONS

In the model presented here, dispersion and quantization of cell division times arises as a
consequence of the interaction of two oscillators (the cell cycle oscillator and the ultradian
clock) in the absence of external noise. Other models have invoked the presence of a chaotic
attractor in cell cycle dynamics (Engleberg, 1968; Mackey, 1985; Mackey el al.. 1986,
Grasman, 1990), but the present model is based on plausible biochemical processes (for the
cell cycle oscillator) and an experimentally demonstrated intracellular timekeeper (the
ultradian clock; Lloyd, 1992). It results in a frequency distribution of cell division times
which closely resembles those observed for animal cells (Klevecz, 1976) and single-celled
organisms (Lloyd and Kippert. 1987). It remains to be established that evolutionary selection
of chaotic cell division dynamics may have certain advantages not scen for noisy dynamics,
e.g. robust defence against perturbations, ease of synchronous coupling of dynamics
between individuals of a population or in a multicellular tissue, construction of long period
oscillations from high frequency ones (Kleveez, 1992).
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FIGURE 3. Quantized cell cycle times. (a) Experimentally observed distributions of timcs of individual
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Abstract An attempt is made to provide physical picture of transfer of in-
formations in cell microtubules. The quantitative model adopted for this purpose is
classical u4-model in the presence of a constant intrinsic electric field. It is demon-
strated that soliton formation in the form of kinks may be energeticaly favorable
under realistic conditions of physical parameter values.

INTRODUCTION

Of the various filamentary structures whichi comprise the cytoskeleton, microtubules
(MT's) are the most prominent ones. Their structure and function is best charac-
terized and they appear to be very suited for dynamic information processinglil.

MT's represent hollow cylinders formed by protofilaments aligned along their
axes (see Fig.1) and whose lengtlis may span macroscopic dimensions.

Figure 1. Left: MT structure from x-ray diffraction
crystallography. Right top: MT-tubulin dimer subunits
composed of a- and 0-monomers.
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In vivo, the cylindricl walls of iT's are assemblies of 13 longitudinal protofila-
ments each of which is a series of subunit proteins known as tubulin dimers. Each
tubulin subunit is a polar, 8-nw i xv fIT. It honsists of two, slightly different 4-nm
monomers with molecular weight of 55 kilodantons. Each dimer may be viewed as an
electric dipole gf which arises from the fact that 18 calcium ions (Ca++) are bound

within each dimer. Thus, MT's can be identified as "electrets" or oriented assem-
blies of dipoles. Barnettl•l proposed that filamnentary cytosceletal structures may
operate much like information strings analogous to semiconductor word processors.
He conjectured that MT's are processing channels along which strings of bits of
information can move.

THE PHYSICAL MODEL

In the theoretical model that is put forward here the basic assumption is that the
dipoles within protofilaments form a system of oscillators with only one degre of
freedom (DF) collinear with axys of NT. This DF is the longitudinal displacement
of center of mass of dimers at the position in denoted by u,b so that we have model
Hamiltonian as follows

N dul ,,, • 1")'2 _ uA 2 +B u4 _CU

The first term on eq. ( I arisesefrom the epre kinetic energy of the longi-
tudinal displacement of one dimer with ef.ective mass M. If the stiffnes parameter
k is sufficiently large long wavelength excitations of the displacement field will be
formed. The parameters A and B involved in double-well potential have the follow-
ing meanings; A is usually assumed to be a linear function of temperature and B is
a positive, temperature- independen~t crystall ine- field quartic coefficient.

The last term in eq.( 1) arises from the experimental fact that the cylinder of a
MT taken as a whole represents one giant dipole. Together with the polarized water
surronding it, NIT generates a nearly uinifo,'m intrinsic electric field (IEF) with the
magnitude E parallel to its axis. S€o 11. is legitimate that the aditional potential

energy of a dipole due to the clectric lield is

1/1 = -cun ; C = qefE (2)

where qeff denotes the effective charge of a single dimer. If we finaly consider the
viscosity of the solvent, taking in1to accodit. the viscous force acting on the dimer's
motion

where -y represents the dampinhg coefficientt (I)C), the equation of motion for system
(1) in the continuum approximation becomes

Al- ___'• Ou

1l - kRM-x2 - Au + Bu3 + -yT - qetjE 0 (4)
at2 t
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where R0 represents the equilibriumL separation between centers of adjacent dimers,
and x-axis is alined along the MT's axis. The equation (4) has a unique bounded
kink-like excitation (KLE)

U(ý) =(--I)111 - 9[-11 + exp(v2)]-} (5)B

where we use the set of denotations
JAI ( V-t) V; = o= (-L)1/2

A= ( _'2) )1/2 (X -/} (6)
01= qjcB 1/ 2(IAI)- 3 /2 E

The main point is that the above bounded solution (5) propagates along the
protofilament with a fixed terminal velocity v which depends on the IEF. We now
assess the magnitude E of JEF at least semi-quantitative. We take into account that
MT's length L is much greater than the diameter of its cylinder which is physicaly
quite reasonable. Hence, for the positions along the MT which are far enogh from
its ends, we simply have

-, = Qeff (7)
.17r-.or 2

where Qe11 represents the effective charge on the MT ends while r denotes the
distance from one end to the relevant point along MT. If we suppose that one MT is
moderately long L = 10-'m, the effective charge consists then of 2x 13 protofilament
ends each of which has a charge of IS x 2e (e = 1,6- 10-" 9 C). Consequently
Qeff ý- 10e3 so that we estimate E - 101 E.

In the other hand, at present we do riot have the exact values of the crystalline-
field coefficients A and B for MT but we will do a rough assess taking A - 500Jm- 2

for T = 300'K and B - 10 2"Jm'.
Using these estimations the dimensionless parameter a from eq.(6) has the fol-

lowing order of magnitutde
a -_ 5. 10-'0 - E (8)

It is therefore clear that even for strong fields the inequality a << 1 holds.
It implies that the travelling terininal velocity of KLE is small in comparison

with the sound velocity (tv << vu). This brinigs about the simple relation between
terminal velocity and IEF as follows

JA= -1-) 2 1E (9)

In other words, we have obtained a linear response relationship. Then, the corre-
sponding KLE mobility it may he mirodmiced as follows

SJv0 (.ilil)"
p = : (A113-) 'Iqf f (10)

-11,4 2
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In order to estimate KLE mobility it is necessary to assess the DC (y) using simple
considerations from fluid mechanics. First of all, each dimer could be approximated
by a sphere with mass M. The drag force exerted by the fluid on the sphere is thus

-6 gi oi Ou
PU = -fifrRi-a- = -I()

The absolute viscosity of water for physiological temperature (300 0 K) has the
following value 77 = 7 10- 4 kgm-s. Inserting R = 4 • 10-sm into eq.(11) one
obtains 'y = 5,6 10-"kgs-'.

The final quantity to estimate is the sound velocity vo. Hakim et al's [3] experi-
mental measurements of the sound velocity in DNA give the value vo = 1, 7.10 3ms-'.
Finally then, putting M. = 55 • 103 x 2 • 10--2 kg = 1,1 . 10- 22 kg and qe. =

18 x 2 x 1,6.10-19C, formula (10) gives approximately

it = 3. l0-6m'2 1-s-1 (12)

If the intrinsic field has the value E = 10'V1m-' the KLE velocity is on the order of
v = 0,3ms-'. The time of propagation of one KLE through one MT (L - 10-'m) is
thus r = Lv- 1 - 3. 10's. It is obvious then that increasing MT's length the time
of information propagation as carried by KLE increases due to the following two
reasons. First, the magnitude of the IEF decreases which results in decreasing the
KLE velocity. Second, the length of the path increases. A very important physical
parameter characterizing the MT's system is the polarization switching time r'. • A
crude estimate gives r, - (not,)-n, where n70 represents the number of KLE's per

unit length. For typical ferroclectrics no is on the order of 10-sm and its value is
almost temperature independent. Lu;ndr I hiese circumstances the switching time is

in a u sec rang.

CONCLUSION

In this paper biophysical picture regarding the structure and function of MT's has
been presented in order to motivate the proposed physical model of their nonlinear
dipolar excitations. Model parameters have been estimated with the use of available
experimental data. It was found that a unique bound solution exists which possesses
a unique velocity of propagation proport ional to the magnitude of the electric field.
In adition to the intrinsic coustant. electric field one may also consider an addi-
tional externally applied electric field which could be seen as a significant control
mechanism in KLE dynamics. For example, applying an external electric field to a
microtubule may halt the KLE's motion and "freeze" the information carried by it.
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ROTATXNG VORTZC8 XNIXTIATZO XN CARDIAC NUCLE:

PULSE CHEMISTRY CONTROL

C.F.Starner! V.I.Krinskyj D.N.Romashko' R.R.Aliev2

'Duke Univer. Medical Center, Durham,
USA, North Carolina, 27710

2 Inst. Theor. & Exper. Biophysics, Pushchino,
Russia, 142292

Excitation wave in cardiac muscle is a strongly nonlinear

wave, whose amplitude and form do not change during propagati-

on. In this respect, it resembles a soliton, although the me-

chanisms of their propagation are quite different, the soliton

spreads without decay only in one-dimensional media, while the

electrochemical wave in the heart do not decay even in two and

three dimensions.

The wave in the heart, as well as any wave, can diffract.

However, in some respects it behaves similar to particles, two

colliding waves annihilate. And again it differs from soli-

tons, which can penetrate one through another. Wave in the he-

art belongs to the general class of autowaves.-3 They are go-

verned by the reaction-diffusion equations dU/dt - DAU + f(U),

where DAU is the diffusion term, f(U) - a nonlinear function.
The behavior of cardiac muscle can be modified by drugs.

Many drugs can bind to only one of ionic channel states. This

provides the basis for "pulse chemistry"4 where binding is

possible during channel residence in one state while unbinding

is permitted during channel residence in other states. Pulse

chemistry thus provides a dynamic way to modify vortex format-

ion and maintenance 4 If a drug binds to inactivated channels,

then

db/dt - kd(l-b)(1-h) - lb (1)

Fumwe Direcuions of Nonlinar Dynamics in Physical and Biological System
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•igUre 1. Experiments on 2D vulnerability (in OZ reaction).

rimes (a)- 0 s, (b)- 30 s, (c)- 85 s, (d)- 121 s.
Compositions Sodium Bromate, Malonic Acid and Sulfuric Acid:
0.25 M; Ferroins b.25 mH.

where b is the traction of blocked channels, (1-h) is the

traction of inactivated channels , d - drug concentration, k

and I are constants of drug binding and unbinding. We studied

vortex formation in the FHN equations expanded by eec (1)s

{ v/c~t-(V(E)-.v)/r~ 4 /p v 1 ~vv 4D.E 2)

cb/dt - (B(E1-b)/T bp

where E - membrane voltage, g K(v-v) r potassium current, 9 Ma

- sodium conductance, V(E) and B(E) -steady state values of

variables v and b; and C, v r, T T b- parameters.

In numerical and chemical experiments, vortices were ini-

tiated by two stimuli separated by time interval ITýange of T

when stimuli led to vortices initiation (vulnerable window,

VW) was determined. Evolution of three perturbations (seen as
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dark points in Ia)) is shown in Fig.l. The perturbations were

imposed at difterent distances from the front. Only the per-

turbation in the center results in spiral wave tormation (this

corresponds to vulnerability).

Investigations of parameters influence on VW unexpectedly

showed that widely used antiarrhythmic drugs - Na channel blo-

ckers - should increase VW and thus promote vortex initiation.

We found that, at the contrary, K blockers should decrease VW

and suppress vortex formation (Fig.2). This means that new ef-

fective antiarrhythmic drugs may be found among K blockers.
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Figure 2. The dependencies of vulnerable window (VW) on gK for

different gNa" Note that VW is always decreased as gK falls.
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Figure S. VW vs stimulating electrode length L.

VW increases with electrode length. For large L (L>2), func-

tion VW(L) is linear.
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The developed simple analytical theory, which is based on

singular perturbation method, shows that VW is proportional to

stimulating electrode length L (Fig.3): VW-Leff /V, where V -

wave velocity, L effL.

The approach is based on the phase plane analysis of the

media state at the points of stimulation. Vortex formation

(vulnerability) is observed when excited region shrinks at one

end of the stimulating electrode and expands at the other. It

occurs when a point of the medium corresponding to zero-

velocity propagation of the excitation front, is covered by

the stimulating electrode. The appropriate time interval is

L/V. The matter of the next-order approximations is the esti-

mation of the difference (L eff-L) and the deviation from line-

arity at small electrode size L.

Similar approaches can be used in analysis of vortices

formation in three dimensional media.
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numerical 27 Nonlinear Fourier analysis 27
periodic 29 Nonlinear optics 85, 394, 399, 405, 409

Nonlinear Schr6dinger (NLS) equation 17, 57,
J-aggregates 381 85. 105, 117, 123, 197, 243, 399, 405.
Jacobi formula 7, 10 422
Jordan-Wigner map 177 2D model 196
Josephson junction 117, 267, 283, 333. 343, 351, and chaos 108

355 coupled 413
array 86, 326, 339, 347, 363, 367 discrete 224,227,241,257

Jost function 244 modulational instability 22
unstable version 101

Kadomtsev-Petviashvili (KP) equation 7, 253 um state metsod 227
discetespac-tie 9Number state method 227discrete space-time 9

KAM surface 130 Optical anisotropy photoproduction 391
Karhunen-Loeve expansion 110 Optical fibre 399. 405, 413, 421
Kawahara equation 193
KdV-Burgers equation 126 Painlev6 analysis 1, 127
Kerr effect 405, 437 Partition function 40

Kink 65, 69, 278. 295, 452, 535 Peierls-Nabarro potential 224
see also Soliton Period-doubling 47. 504

Klein-Gordon equation 67, 293 Phase locking 509
discrete 63, 223 Phase transitions 249
nonlinear 77, 120 Plana's expansion 43

Kobayashi equation 409 Plicker relation 7. 10
Kolmogorov length scale 98 Predator-prey equations 14
Kohnogorov-Sinai entropy 148 Poincar6 section 110, 273. 506
Korteweg-de Vries (KdV) equation 8, 27, 117 Poisson bracket 102, 458

time-like 28 Poisson equation 19, 47, 52
Kuramoto-Sivashinsky equation 128 Polaron 85, 213, 231, 265

Proton pumping 474
Lamb dipole 52 Pulson 200
Lamn equations 273 Pump-probe equations 418
Lang equation 409
Langnimiir-Blodgett film 231, 381, 391, 394 Q-boson 217
Lattice models see Discrete systems Quantum groups 177. 219
Lax pair 8, 244. 458 Quantum inverse scattering 218. 227
Liquid crystals 371 Quasicrystals 144
Lotka-Volterra equations 14
LR factorization method 12 R-matrix 103
Lyapunov dimension 97 Rayleigh component 55
Lyapunov exponent 141, 158, 499 Rayleigh surface wave 56
Lyapunov stability 405 Reaction-diffusion systems 517

Reynold's number 45, 53
Magnetron 18 Riccati equation 128
Mar,.henko equation 80 Riemann theta function 352. 455
Master .-quation 494 Rossby wave 59
McCumber branch 267, 304, 365 Rotating wave approximation 64, 204
Microtubules 533
Mitotic oscillator 527 Schr6dinger equation, nonlinear see Nonlinear
Modified KdV equation 8 Schr6dinger equation
Monodromy matrix 29, 103 Self-focussing 85, 121, 231
Morphogenesis 519 Semiconductor optical waveguide 417
Morse potential 208 Serret-Frenet equations 244
M6ssbauer effect 261 Shimmying wheels 169
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Sine-Gordon 2D model 196, 308 Toda equation 37, 190, 261
Sine-Gordon equation 8, 64, 86, 110, 113, 117, discrete-time 7

268, 283, 289, 333, 347 driven, damped 235
discrete 258, 364 2D equation 10
double 449 Toda potential 470
mechanical analog 284 Transport properties 85
quantum 465 Turbulence 46

Skryme model 73 Turing structure 517
Soliton 34, 37, 78, 85, 143, 174, 186, 231, 236 Two-wave interaction 7. 13

2D structure 73
chaotic 173 Ultradian clock 527

collective coordinates 115 Ursell number 34

Davydov soliton 231, 241, 425, 445, 464, Van der Pol model 509477VadePomoe59
formation 23 Verlet algorithm 68

formaton 23Vibron 86, 204gap soliton 63 \'bo 6 0
gap olitn 63Vlasov-Poisson Model 18

in liquid crystals 37.5 Vortex
optical 403, 405 breakdown 46
in polyacetylene 67 in cardiac muscle 539
quantum soliton 227 dipole 51, 61
soliton band 227 sheet 53
soliton-impurity interaction 113, 117 sh e 59
soliton-soliton collision 57 structure 59
solutions 7, 10, 39, 109 Weierstra~ss function 125, 463
subsonic 57 Weyl-Heisenberg algebra 179. 219
transsonic 57 Whitham method 377

Squeezed states 177 Wronskian 8, 29
Squid axon 509
Stationary solution 65 XY model 367
Stochastic resonance 153
Su-Schrieffer-Heeger model 67 Yangs' equation 221
Swift-Hohenberg equation 146

Zakharov-Shabat scattering problem I ll
Taylor-Proudman theorem 53 Zakharov system 56

Thermal fluctuations 385, 425 Zero field step (ZFS) 267. 341
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